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The influence of a nonuniform
rf field on the ion trajectories in

an omegatron |

J Bijma and B J Hoenders
Laboratorium voor Technische Natuurkunde,
Rijksuniversiteit Gronigen, The Netherlands

Ms received 18 May 1971

Abstract The quadrupole field component of a nonuniform
rf field causes an effect which improves the resolution and

is called rf drift-off. This effect is mathematically analysed.
Some experimental results are shown which are in good
agreement with the theory.

Nomenclature

a, a’ coefficients defined in (1) and (3a) (V m™1)

b, b coefficients defined in (1) and (3a) (V m~2)

B magnetic field strength (T)

C coefficients defined in (35)

d distance between the y axis and the collectors
(figure 3) (m)

e unit charge (C)

E electric field strength (V m~1)

k shift parameter defined in (28)

Kk, ©) function defined in (34)

! 2/ is the mutual distance between the collec-
tors in figure 3 (m)

m ion mass (kg)

mo atomic mass unit, 1 a.m.u. (kg)

M mass in a.m.u.

0,0 origin coordinate system defined in (8) and (22)

r radial distance to the origin O (m)

r’ radial distance to the moving origin O’ (m)

¥ radial velocity in cylindrical coordinates (A11)
(ms™)

Ri, Ra residual terms defined in (17) and (18) (m)

R3 residual term defined in (194)

S resolving power defined in (27)

t time (s)

T temperature (K)

v ion velocity (m s™1)

XV, z Cartesian coordinates (m)

x(0), 3(0), z(0) initial coordinates (r=0) defined in (8) (m)
Xp first order approximation of the perturbed
solution defined in (16) (m)

Xu unperturbed solution in x defined in (14) (m)

Yps Yu analogical to xp, xu (M)

Yde drift-off distance defined in (A10) (m)

Ydr total drift-off distance defined in (21) (m)

o, coefficients defined in (3) and (3a) (m s~2)

B, B coefficients defined in (3) and (3a) (s72)

s angle in cylindrical coordinates defined in
(A1D

& phase angle of the rf field defined in (1)

T integration variable (s)

w angular frequency of the applied rf field
(rad s71)

Q* apparent angular frequency defined in (38)
(rad s-1)

Q angular frequency defined in (3) (rad s~1)

Aw angular frequency difference Aw=w—Q
(rad s71)

Awr angular frequency difference defined in (26)
(rad s71)

1 Introduction

In the existing theories describing the performance of the
omegatron (Berry 1954, Warnecke 1959-60) the rf field is
assumed to be uniform. Indeed, omegatrons with a uniform
rf field have been developed, but simple omegatrons as the
much-used Alpert-type (Alpert and Buritz 1954) and the
long omegatron of van der Waal (1963) have a nonuniform
field. This nonuniform rf field causes two effects (Bijma et al.
1968):

(i) Near-resonant ions (Aw=w-Q#0) drift off into a
direction perpendicular to the magnet field and the rf electric
field. This drift-off, which we call rf drift-off, improves the
resolving power.

(ii) At a superimposed frequency w=2 Q ions with a cyclo-
tron frequency Q reach the collector and give rise to a harmonic
peak. This peak can easily be suppressed.

In this paper the abovementioned rf drift-off is described.
The harmonic effect will be described in a next paper.

2 Equations of motion in a nonuniform field

In order to derive an expression for the equations of motion
in an omegatron we have to determine the electric field.
Therefore the field shape in a long omegatron has been
measured with the aid of a model in an electrolytic plotting
tank. As expected, in this omegatron the field nonuniformity
was found to occur mainly in the x and z direction,
with which the coordinate system has been defined in
figure 1.

In this paper we only consider the motion in the z=0
plane, giving a model with which the most important pheno-
mena can be explained. In the z=0 plane the rf electric field
can be approximated by

Ez=(a+bx) sin (wt+ ¢)
Ey=0 ¢))]
Ez = 0.
The nonuniformity of the rf field is taken into account by the
quadrupole term bx sin (Qz+ ¢). The magnetic field is assumed

to be constant, and passes along the z axis. B=(0, 0, B). The
equations of motion for the ion are derived with the aid of
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Figure 1 (@) RF potential distribution in a long omegatron,
() The nonuniform field is a superposition of a quasi-linear
and a quasi-quadrupole field

the Newton-Lorentz relation:
d
a@ (mv)=e(E+vAB). )

e is the positive unit charge; the ion is assumed to be singly
ionized. We define:

ea eb

= P

0= id Aw—w-0 3
m

After some elementary work from (2) with (1) and (3) we
obtain the following system of differential equations:

£+ Q2x={(a+ Bx) sin (wt+ )+ Q3(0) + Q2x(0) “w

y=—Q{x—x(0)} + 3(0) )
£=0. ©®

The homogeneous part of (4):
X4 Q2x=Bx sin (wt+ ) @)

is known in literature as the Matthieu equation. When t=0
the initial conditions are

x(0)=3(0)=z(0)= 2(0)=0, and %(0), 7(0) have given values.
®)
To explain the effects mentioned in §1 approximation solutions

from (4) are derived in §3. The influence of a dc field can be
expressed by including the terms

, ea ,_eb’
o= and f'= P (3a)

in the differential equation
(2= ) x=(a+ Bx) sin (wt+ )+ QpO0)+ o  (4a)
y=—Qx+y(0) &)
f=—fz. (6a)

In the calculations made in §3 it is assumed that &’'=8'=0
unless the contrary is indicated
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Figure 2 Trajectory of a near-resonant ion in a uniform
and a nonuniform rf field

3 RV drift-off

3.1 Introduction

Calculations with the aid of a computer show a drift-off effect
of near-resonant ions in a nonuniform rf field. This drift-off
direction is perpendicular to the electric and magnetic field,
i.e. in the chosen coordinate system in the y direction. Figure 2
shows a near-resonant ion trajectory in both a uniform and a
nonuniform rf field. In a uniform rf field the path radius is
approximated by

a

r=BAw

sin $Awt, Aw=w-Q#0 (Appendix 1). (9)

On this motion a drift-off effect is superimposed, if we have to
deal with a nonuniform field.

3.2 Mathematical treatment

The drift-off effect can be calculated by considering
Bx sin (wt+¢) in the differential equation (4) as a perturba-
tion term with respect to the term Q2x. This allows for

| Bsin (wt+¢) | <Q? (10)

which condition has been satisfied for the fields considered
by us (see Appendix 4). We shall prove that taking 5=0 in
(4) the general solution of this equation can be written in
closed form under the initial conditions of (8). We consider
the differential equation

P4 Q2x=1(1, x) (11)

which may be transformed, with the boundary conditions
x(0)=0 and x(0) and with the aid of Laplace-transformation
or variation of constants, to the integral equation

X(0)
Q

X=

¢
sin Qt+$ ff(r, x) sin Q(z—1) dr. (12)
0

For =0 the right-hand side of equation (4) becomes
£(t, )= sin (wt+$)+ QHO). (13)

Provided that w# €, substituting (13) in (12) we obtain the
unperturbed solution:
_(0) 0

sin Qf+~x" (1 —cos Q¢)+

o
Ye=T0 Q Q- w?®)

x {sin (wt+ $)—cos Qf sin $— 5 sin Q¢ cos ¢ 1.
14
If B#0 (4), (12) and (14) yield
13
x=xu+g f sin Q(r—7) x(7) sin (wr+ ) dr.  (15)
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Omegatron with nonuniform rf field

An approximated resolution of this equation can be found by
the iteration method of Liouville-Neumann, which method
can be applied in our case, since sin Q(#— 7) is a continuous
kernel function (Grobner and Lesky 1964). We use the first
order approximation which consists of replacing x(r) by xu
in the integral form (15):

Qt
xp—xu=£—2 f sin Q(¢—7) xusin (wr+¢) d(Q7) (16)
0

where xp is the approximated resolution,

Since B/Q2<1 (see Appendix 4) the first order approxima-
tion (16) differs only a little from the exact resolution (15).
A second-order approximation gives terms being a factor of
B/Q? smaller than the calculated first order terms. For this
reason we only apply the first order approximation. Working
out (16) gives:

#(0) Bcos (Awr+¢) #(0) Bsin (Awt+ )
208 1-(Aw/Q? 208 1-(Aw/Q)?

S
PIOE (LIS

cos Awt  Aw cos (Awr+¢)
{l‘mg—yfﬁ 5% T B/

Xp—Xuy=

}+R1

a7

in which the residual term R; consists of oscillating terms with
frequency of approximately Q and amplitude less than or
equal to «f/2Q¥Q2—~ w?). For the considered frequencies
(Aw/C2<1 is assumed, in which case the term (Aw/Q)? is
negligible. From (5) and (17) we obtain the perturbation
term yp = yu, being the rf drift-off:

Yp—Yu= —:;—(g)c;@ sin $Aw? cos (FAwt+4¢)
+ 2)—2(% sin $Awt sin (FAwr+ )+ 2—9(—{;%
X {— t+SiZi;Ut+é cos ¢ sin $Aw?
X COS (%Awt+¢)}+R2. (18)

The residual term Rz, consisting of oscillating terms with a
frequency approximately  and an amplitude less than or
equal to «3/2Q2(Q2 — w?), can be neglected. With substitution
of (3), (18) is reducible to

J’p—J’u=4—;ngé(;t(s—i%—l+Ra) (19)
with
o (2
X {— 2 cos ¢ cos (JAwr-+¢)— 4)&(2) B cos FAwr+¢)
+@(fz)ﬁsin (3Awr+ 95)}) (19a)

In Appendix 5 the residual term Rz is shown to be small
with respect to the leading term, on conditions fulfilled in
practice. The rf drift-off yp — yu is approximated by

ab sin Awt
yn‘}’u—mlfl—w}- (20)

Beside the rf drift-off in an omegatron an additional dc
drift-off occurs as a result of the dc field we applied in the
x direction. This dc drift-off is approximated by:

’

Vae _% ‘. (A10)
The total drift-off yq4r is the sum of the dc drift-off and the rf
drift-off yp—yu, so

—ab sin Awt
ydr=(J’p—yu)+ydc= {

a/
iBAe W"I}‘E" @0
We now choose a new origin O’ moving with the drifting-off
ion. This is

, —ab  (sin Awt a
0 (O’m g {W‘l}‘ﬁt)“ @

With respect to O’ the drifting-off ions have the same radius
as the nondrifting-off ions had with respect to O, given by (9):

= BZT sin $Awt. (23)
3.3 The influence of rf and dc drift-off on the resolving power
The influence of rf and dc drift-off on the resolving power can
easily be explained in case of an omegatron with, for instance,
three collectors Ci, Ce and Cz with a mutual distance 2/.
The distance between the y axis and the collectors is d.

¥

Cl‘f£C3

T
i
i
i
i

Figure 3 Geometry of the long omegatron

If the drift-off distance of O’ is smaller than 3/, ions for
which = d hit one of these three collectors. In the omegatron
drawn in figure 3 ions reach

collector Cy if —3/<yar< =1

collector Cz if —I<yar< +/
and
collector Cs if +I/<yar< + 3. 24

We now determine the frequency range for which r’>d.
With the maximum value of »/

, a
¥ max B ] Ao E (25)
we define
Aw1=l Aw | if l”max=d
hence
Awy=2 26

The frequency range for which ' =d is equal to 2Aw;i. Hence
it follows that the total peak width is 2Aw;. The resolving
power in connection with this total peak width is

M Q eB2d

S=m_ 2Aw1 2am’ 27
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As a result of this drift-off ions from a frequency range
2Aws can hit different collectors, in this case three collectors,
dividing the total peak in subpeaks, each of them of course,
smaller than 2Aw;. The resolving power, measured on each
single collector, can be determined as follows. With the
radius r’=d the drift-off position O’ depends on the shift of
Aw and can be expressed as a function of a shifting parameter
k, defined by

k=29 with |k|<l. (29)
Awi
From (23) we derive
a Aw ., d .
v Awt=- LAwt, 29
¥ Bhor Aw sin Awt ksm7 w (29)

For r'=d with t=# it is necessary that

71 sin tAwti=1, so sinfAwti=k. 30

The drift-off distance yar of O at =1, is equal to
—ab {sin Acutl_ 1} a’

Yu=iBAe |\ Aen “Bh 3D

’

— 2
ab (_A_Cil) {sin Awh-—Awtl}—% t1.

=4B2Aw12 Aw
(32
With (26), (28) and (30) this can be turned into:
bd?
yar="2- K(k, ©) (33)
where
1 C .
= — 2 —gin-l k) — = sin-1
Kk, C) 57 {k(1-k?) sin~! k} P sin~1 k (34)
and
2a' 2a’ a
= =4 bd (35)
K (4,C)

Figure 4 The function K(k, C) for discrete values of C. As
an illustration the collecting ranges (K_s1, K_1), (K_1, K.1)
and (K., K_3;) are given for la/bd?2=0-25
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k=410

Figure 5 The function C(k, K) for discrete values of K. As
an illustration the collection ranges (K_s;, K1) and
(K_1, K1) intersects with C=05

The factor bd?/a in formula (33) is a constant for a given
omegatron configuration, so that the drift-off yqr is propor-
tional to the function X (k, C). In figure 4 the function K (k, C)
has been drawn.

Connected with this function K=K (k, C) (34) is the func-
tion C=C(k, K) (35) for which we can write

—2Kk+(1—k3)12 |

Cl O=——Fm5r "%

(36)
In figure 5 this function has been drawn for discrete values of
K. The relation (24), which gives the collection ranges for the
different collectors, can be transferred into

a a
K_a1= —311)72<K(k, C)<K_1=- lg‘z for collector Cy

a

K==l

<Kk, C)< K= 4-11%2 for collector Cq

a a
K= +1521_2<K(k’ C)<Kiz= +31172 for collector Cs
(37

K_31,K_1,...K-3; are discrete values for K in a given
omegatron. At a given rf and de¢ field the function C(k, K)=
(2d’'{a) (a/bd) has a constant value. The intersection of
C(k, K)=constant with (K_si, K1), (K_i, K+1) and (K41,
K.31) gives the peak distribution over the collectors Ci, Ca
and Cs. It can be seen from figure 5 that the peak frequency
is shifted by variation of C. C=(2a’/a) (a/bd) depends on the
rf field @ and the drift-off field «’; the factor a/bd is a constant
for a given omegatron configuration. Furthermore, the
frequency is shifted by the dc¢ trapping field. It follows
from (4a) that

Q*=(Q2— Y12 x Q- B2 (38)

Though the theory of rf drift-off is new, all simple omega-
trons with a nonuniform rf field show this effect. The extent
of advantage of this effect depends on the place of the collector
and the dimensions of the collection range. The theory
described by Petley and Morris (1968) can be applied only
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Figure 6 This three-dimensional display of measurements
shows a number of mass peaks recorded at distinct values
of the drift-off field a’. a being constant, a’ is proportional
to C(k, K). The frequency shift k= Aw/A w; is indicated.
The peak height is proportional to the measured ion current

4

t —»k
on the collector. The peak shift is in good agreement with
the shift theoretically indicated in figure 5. The resolving

power is up to a factor 6 better than the classical value given
by 27. More details of this measurement are to be published.

on omegatrons with a uniform rf field. The elongated shape
with hyperbolic electrodes may be the most favourable shape
for an omegatron. For, then the coefficients b and b deter-
mined in §2, which were only valid for the plane z=0, can
be applied in the entire omegatron. Consequently, we obtain
a frequency shift of Q*—Q=—p/2Q no longer being
dependent on the place in the omegatron. This is one of the
conditions to obtain a great resolving power with small rf
signals. The coefficient b which causes the rf drift-off is also
independent of the place in a quadrupole omegatron. Some
typical results of such a quadrupole omegatron are given in
figure 6.

Appendix 1 Review of the theory of the ion trajectories in a
uniform field

Ion trajectories in a uniform field are determined by the
differential equations (4) and (5) with boundary conditions
(8) and B=0. This system can be resolved elementarily by
(see §3)

u=(ﬁ) n Q¢ y()(l coth)+

2

{sm (wt+¢)—cos Qr sin qS— — sin Qz cos qﬁ}

(14)
y( )

«
O2— 2

_%(0)

a (cos Qt—1)+—"sin Qr—

cos d+ 5 cos ¢ cos Q1

02— 2
X{ w

Q
—-cos (wr+¢)—sin ¢ sin Qz}.
(A1)
The influence of the initial velocities and of the terms with
forefactor «/€22 can be neglected. «/Q2 is assumed to be

small with respect to «/QAcw, which is consistent with the
assumption that Aw/Q<1:

Xu, pp= QA sin YAwrcos {HQ+ w) t+¢}  (A2)

Yu, Ap= QA sin YAwrsin 3(Q+w) t+¢).  (A3)

5*

From this it follows that

o a
_ > &int =_2 i 1/

AL Sin 1Awt FAg S 1A wt. (Ad)
Appendix 2 The influence of a uniform dc field on the ion
trajectories

In equation (4a) the influence of a dc field in the x direction
is given by the term o’. We consider f=8'=0:

=

¥+ Q2 =qasin (wi+ @)+ QO0)+ & (4b)
y=—Qfx—x(0)}+ 3(0). )

The resolutions of this system are given by
X=Xu+ Xdc (AS)
Y=Yu+Yyde. (A6)

The resolutions x, and yu have been given by (14) and (A1),
whilst

Xde= g (1 cos Q)= (1 —cos Q) (A7)
il Q= (A8)
Yae=— Q @i BQ

The influence of the term xqc on the given derivation from the
rf drift-off (8#0) is negligible, which appears from the
relative perturbation term:

t t
-Q f de é J sin Q(t1—7) B%) (1—cos Qr) sin (wr+¢) dr.

Q
(A9)

In §3 only the asymptotic behaviour of y4c given by

4

Vde= "Et

(A10)
is important.

Appendix 3 Initial velocity of the ions

The velocity distribution of the gas particles at equilibrium
at a certain temperature is given by the Maxwell distribution,
The ionization of the gas occurs with an electron beam of
about 90eV. If the gas is ionized but not dissociated the
energy distribution is only slightly changed. So, for a good
approximation we can use the Maxwell distribution. A simple
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notation for the Maxwell distribution can be obtained by
transformation from Cartesian to cylindrical coordinatesin
the velocity space:

x=rcos
y=Fsin{ (A11)
=2z

The velocity distribution in the plane (%, )= (#, {) is
[ de dC—z kTeXp ( ZkT) Fdrdd. (A12)

The average velocity in this plane is

Fe rf(r)fdc ”RT)1/2—114(%)1"2. (A13)

0

If under influence of the electron impact molecules dissoci-
ate, pieces are generated each of them possessing a part of
the energy absorbed by the ion. This process mainly occurs
in organic molecules (Brunnée-Voshage 1963). In this case it
is difficult to estimate the velocity of the obtained ions.
Appendix 4 Numerical data
In this appendix some physical constants are given. Further-
more some values of the magnitude of the field, as they were
found to occur in the omegatron considered by us, are given.
With the aid of these data some neglected quantities are finally
verified.

Q=6—Brad s~1
m
e=16x10"12C
=M mo kg

mo=166x10-2"kg~1 a.m.u.
M is mass in a.m.u.

For the performance of an omegatron a magnet with a
strength of about 0-4 T is often used:

B~04T.

In a long omegatron which measures 2cmx2cmx 5 ¢cm an
rf voltage with an amplitude of Vi V gives for the magnitudes
defined in formula (1) the following values:

a~50 Vi Vm-t
b~5%x103 Vi Vm-2,

Usually V=1 or 2V is applied. d~10-2m is the usual
collector distance.
B/Q2: with the above-mentioned numerical magnitudes
B/Q2<1 can now be verified:
B bmoM

0 B
For M <100 amu. and Vie=1 or 2V, 5/Q2<]1 is valid.
Aw/Q: in the derivation of formula (20) terms are neglected
on account of the assumption that | Aw/Q | <1, This assump-
tion is satisfied by those ions which can be detected, i.e. for
which

~3% 1074 MV

a
r=———sin fAwtz=d.
BAw = =

Then with the above-mentioned numerical magnitudes

Aw Awy
ﬁ_k Q _kB—2—d_3X104kMVrf

For M<100 am.u. and Vrx=10r 2 V| Aw/Q |<1 is valid.
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Appendix 5 Analysis of the residual term Rs (formula 19a)
The magnitude of the rf drift-off of the ions reaching the
collector, i.e. for which | &k | <1, is of experimental importance.
Therefore the residual term Rs is considered for | & |<1.
With the transformation to cylindrical coordinates as given
in (A11), from (19a) it follows that

sin $Awt

Rs= Aot TAar

—Aw {sin Awt
o |

X {—2cos ¢ cos (FAwr+ ¢)—i? cos (FAwr+ ¢+ g)})

(Al4)

With the aid of the numerical data in Appendix 3 and 4
the magnitude of Rs can be determined. The greatest contri-
bution can be provided by the term containing the initial
velocity #:

+Aw 4BF

-m— cos (%Awt+¢+ Z)

In illustration, suppose 7 is equal to the average thermal
velocity in the plane (7, {), then with R=300K, B=04T
and d=10"2m the following inequality is valid:

2Aw BF

—Q—w—r cos (FAwr+ ¢+ <102k M12<].
On account of the above-mentioned the residual term Rs
has been neglected in first approximation.
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