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a, a' 
b, b' 
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m 
mo 
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I" 
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RI, R2 
R3 

S 
t 
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XP 

XU 

YP, Y u  
Ydc 

u 

X(O), Y(O), 4 0 )  

Y dr 
01, 01' 

P, P' 
t 

4J 
7 

w 

Q* 

coefficients defined in (1) and (3a) (V m-1) 
coefficients defined in (1) and (3a) (V m-2) 
magnetic field strength (T) 
coefficients defined in (35) 
distance between they axis and the collectors 
(figure 3) (m) 
unit charge (C) 
electric field strength (V m-l) 
shift parameter defined in (28) 
function defined in (34) 
21 is the mutual distance between the collec- 
tors in figure 3 (m) 
ion mass (kg) 
atomic mass unit, 1 a.m.u. (kg) 
mass in a.m.u. 
origin coordinate system defined in (8) and (22) 
radial distance to the origin 0 (m) 
radial distance to the moving origin 0' (m) 
radial velocity in cylindrical coordinates (A1 1) 
(m s-1) 
residual terms defined in (17) and (18) (m) 
residual term defined in (19a) 
resolving power defined in (27) 
time (s) 
temperature (K) 
ion velocity (m s-1) 
Cartesian coordinates (m) 
initial coordinates ( t = O )  defined in (8) (m) 
first order approximation of the perturbed 
solution defined in (16) (m) 
unperturbed solution in x defined in (14) (m) 
analogical to xp, xu (m) 
drift-off distance defined in (A10) (m) 
total drift-off distance defined in (21) (m) 
coefficients defined in (3) and (3a) (m s - ~ )  
coefficients defined in (3) and (3a) ( s - ~ )  
angle in cylindrical coordinates defined in 
(A1 1) 
phase angle of the rf field defined in (1) 
integration variable (s) 
angular frequency of the applied rf field 
(rad s-l) 
apparent angular frequency defined in (38) 
(rad s-1) 

Abstract The quadrupole field component of a nonuniform 
rf field causes an effect which improves the resolution and 
is called rf drift-off. This effect is mathematically analysed. 
Some experimental results are shown which are in good 
agreement with the theory. 

n angular frequency defined in (3) (rad s-1) 
h w  angular frequency difference Aw = w - s1 

(rad s-1) 
A w l  angular frequency difference defined in (26) 

(rad s-1) 
1 Introduction 
In the existing theories describing the performance of the 
omegatron (Berry 1954, Warnecke 1959-60) the rf field is 
assumed to be uniform. Indeed, omegatrons with a uniform 
rf field have been developed, but simple omegatrons as the 
much-used Alpert-type (Alpert and Buritz 1954) and the 
long omegatron of van der Waal (1963) have a nonuniform 
field. This nonuniform rf field causes two effects (Bijma et al. 
1968) : 
(i) Near-resonant ions ( h w  = w - R # 0) drift off into a 
direction perpendicular to the magnet field and the rf electric 
field. This drift-off, which we call rf drift-off, improves the 
resolving power. 
(ii) At a superimposed frequency w = 2  Q ions with a cyclo- 
tron frequency !2 reach the collector and give rise to a harmonic 
peak. This peak can easily be suppressed. 

In this paper the abovementioned rf drift-off is described. 
The harmonic effect will be described in a next paper. 
2 Equations of motion in a nonuniform field 
In order to derive an expression for the equations of motion 
in an omegatron we have to determine the electric field. 
Therefore the field shape in a long omegatron has been 
measured with the aid of a model in an electrolytic plotting 
tank. As expected, in this omegatron the field nonuniformity 
was found to occur mainly in the x and z direction, 
with which the coordinate system has been defined in 
figure 1. 

In this paper we only consider the motion in the z=O 
plane, giving a model with which the most important pheno- 
mena can be explained. In  the z = 0 plane the rf electric field 
can be approximated by 

E,=(a+bx) sin(wt++) 
E y = O  

Ez=O. 

The nonuniformity of the rf field is taken into account by the 
quadrupole term bx sin (nt+ 4). The magnetic field is assumed 
to be constant, and passes along the z axis. B= (0, 0, B). The 
equations of motion for the ion are derived with the aid of 
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Figure 1 (a) RF potential distribution in a long omegatron, 
(b)  The nonuniform field is a superposition of a quasi-linear 
and a quasi-quadrupole field 

I 

the Newton-Lorentz relation: 

d dt (mu)=e(E+uAB). (2 )  

e is the positive unit charge; the ion is assumed to be singly 
ionized. We define : 

e a  eb 
a=- , P=- m m’ 

(3) 
eB 
m 

Q=- and h w = w - Q .  

After some elementary work from (2) with (1) and (3) we 
obtain the following system of differential equations: 

x + Q2x = (a  + P x )  sin (wt + 4) + Qj(0)  + @x(O) (4) 

p= -Q{x-x(O)}+j(O) (5) 

f =  0. (6 )  

i+CPx=/3xsin(wt+4) (7) 

The homogeneous part of (4) : 

is known in literature a s  the Matthieu equation. When t = O  
the initial conditions are 

x(0) = y(0) = z(0) = i(0) = 0, and i(O), j (0)  have given values. 
(8) 

To explain the effects mentioned in Q1 approximation solutions 
from (4) are derived in $3. The influence of a dc field can be 
expressed by including the terms 

ea’ eb’ 
a’=- and P’= - m m 

in the differential equation 

x+ (Q2 - p’) x =  (a  + Px) sin (wt + 4) + Qj(0) + a’ (4a) 

In the calculations made in $3 it is assumed that a‘= P‘=O 
unless the contrary is indicated 

I 
Uniform fizldi ; “ J n l f o r m  f12 a 

Figure 2 Trajectory of a near-resonant ion in a uniform 
and a nonuniform rf field 

3 RF drift-off 
3.1 Introduction 
Calculations with the aid of a computer show a drift-off effect 
of near-resonant ions in a nonuniform rf field. This drift-off 
direction is perpendicular to the electric and magnetic field, 
i.e. in the chosen coordinate system in they direction. Figure 2 
shows a near-resonant ion trajectory in both a uniform and a 
nonuniform rf field. In a uniform rf field the path radius is 
approximated by 

a 
BAfJJ f.=- sin +Aut, Aw = w - 0 # 0 (Appendix 1). (9) 

On this motion a drift-off effect is superimposed, if we have to 
deal with a nonuniform field. 
3.2 Mathematical treatment 
The drift-off effect can be calculated by considering 
Px sin (u t  + 4) in the differential equation (4) as a perturba- 
tion term with respect to the term Q2x. This allows for 

I Psin(wt+$) (10) 

which condition has been satisfied for the fields considered 
by us (see Appendix 4). We shall prove that taking p=O in 
(4) the general solution of this equation can be written in 
closed form under the initial conditions of (8). We consider 
the differential equation 

x+ sl2x=f(t, x) (1 1) 

which may be transformed, with the boundary conditions 
x(O)=O and i(0) and with the aid of Laplace-transformation 
or variation of constants, to the integral equation 

Q l S  
4 0 )  
Q x=- sin Qt+- f ( ~ ,  x )  sin Q(t-T) dT. (12) 

0 

For P = O  the right-hand side of equation (4) becomes 

f ( t ,  x)=asin(wt++)+Qj(O). (13) 

Provided that w #  Q, substituting (13) in (12) we obtain the 
unperturbed solution : 

w 

(14) 
If P # O  (4), (12) and (14) yield 

X = X u - k P  R i s i n  n(t-T) X(T) Sin ( U T + $ )  dT. (15) 
0’ 
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Omegatron with nonuniform rf field 

An approximated resolution of this equation can be found by 
the iteration method of Liouville-Neumann, which method 
can be applied in our case, since sin Q(t- 7 )  is a continuous 
kernel function (Grobner and Lesky 1964). We use the first 
order approximation which consists of replacing X ( T )  by xu 
in the integral form (15): 

x p - x u = A  i s i n  n ( t - 7 )  xu sin ( w ~ + $ )  d(&) (16) 
0 

where x p  is the approximated resolution. 
Since p/@< 1 (see Appendix 4)  the first order approxima- 

tion (16) differs only a little from the exact resolution (15). 
A second-order approximation gives terms being a factor of 
p / Q e  smaller than the calculated first order terms. For this 
reason we only apply the first order approximation. Working 
out (16) gives: 

i(0) P c o s ( h w t + $ )  j (0)  psin (Awt++)  
x p  - xu = ~ 

-- 
2 ~ 3  1 - ( h W m ) 2  2 ~ 3  1 - (hw/n)2 

4 
+ 2 Q y n 2  - w2) 

cos A w t  -_ h w  cos + c ~ ~ ~ u ~ ~ ~ ]  +RI 

(17) 

l - ( h w / Q ) 2  Q x {l- 

in which the residual term RI consists of oscillating terms with 
frequency of approximately n and amplitude less than or 
equal to ap/2Q2(Q2 - ~ 2 ) .  For the considered frequencies 
(Aw/Q)2@1 is assumed, in which case the term ( A w / Q ) ~  is 
negligible. From (5) and (17) we obtain the perturbation 
term yp- yu, being the rf drift-off: 

sin A w t  2 

x COS (+hwt++)  +Re. (18) 1 
The residual term R2, consisting of oscillating terms with a 
frequency approximately Q and an amplitude less than or 
equal to a/3/2@(CP- w2), can be neglected. With substitution 
of (3), (18) is reducible to 

with 

sin h w t  sin + h u t  
l+- t A w t  

41(0) B 
x ~ - * c o s $ c o s ( + ~ w t + $ ) - -  a cos (+hwt+$)  I 

4j(O) B +- a 

In Appendix 5 the residual term R3 is shown to be small 
with respect to the leading term, on conditions fulfilled in 
practice. The rf drift-off yp - yu is approximated by 

Beside the rf drift-off in an omegatron an additional dc 
drift-off occurs as a result of the dc field we applied in the 
x direction. This dc drift-off is approximated by: 

The total drift-off Ydr  is the sum of the dc drift-off and the rf 
drift-off yp - yu, so 

-ab sin A w t  a’ 
4 B 2 A w  I Awt I B 

Y d r = ( y p - Y u ) + y d c = y  t ~- 1 - - t i .  (21) 

We now choose a new origin 0’ moving with the drifting-off 
ion. This is 

With respect to 0’ the drifting-off ions have the same radius 
as the nondrifting-off ions had with respect to 0, given by (9): 

3.3 The influence of rf and dc drift-of on the resoluing power 
The influence of rf and dc drift-off on the resolving power can 
easily be explained in case of an omegatron with, for instance, 
three collectors C1, C Z  and C3 with a mutual distance 21. 
The distance between the y axis and the collectors is d. 

Figure 3 Geometry of the long omegatron 

If the drift-off distance of 0’ is smaller than 31, ions for 
which r‘> d hit one of these three collectors. In the omegatron 
drawn in figure 3 ions reach 

collector C1 if -331<ydr< -1 
collector C2 if - l<Ydr< +l  

collector C3 if + 1 < Ydr < + 31. 
and 

(24) 
We now determine the frequency range for which r‘> d. 

With the maximum value of r’ 

we define 

hence 
Aul=l h w  I if r‘max=d 

a 
Bd ’ 

Awl=- 

The frequency range for which r‘>d is equal to 2Aw1. Hence 
it follows that the total peak width is 2Awl .  The resolving 
power in connection with this total peak width is 
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As a result of this drift-off ions from a frequency range 
2Aw1 can hit different collectors, in this case three collectors, 
dividing the total peak in subpeaks, each of them of course, 
smaller than 2Awl. The resolving power, measured on each 
single collector, can be determined as follows. With the 
radius r‘=d the drift-off position 0’ depends on the shift of 
h w  and can be expressed as a function of a shifting parameter 
k, defined by 

k=-, with I k l < l .  (28) 
AW 
Awl 

From (23) we derive 

(29) 
a A w l  . d 

Bhwl h w  k 
y’=- ~ sin +Awt=- sin @wt. 

For ~ ’ = d  with f= t l  it is necessary that 

(30) 
1 
- sin bhwtl= 1, so sin +hwt l=  k.  
k 

The drift-off distance Ydr of 0‘ at t= tl is equal to 

With (26), (28) and (30) this can be turned into: 

bd2 
a y d r = -  K(k, C )  

where 
1 C 

2kZ k 
K (k, C )  = - {k(  1 - k2)112 - sin-1 k }  - - sin-1 k 

and 

Figure 4 The function K(k, C) for discrete values of C. As 
an illustration the collecting ranges (K-31, K-z), (K-Z, K+L) 
and (K+L, K-31) are given for la/bd2= 0.25 

Figure 5 The function C(k, K) for discrete values of K. As 
an illustration the collection ranges (K-31, K-1) and 
(K-l, K+z) intersects with C=0.5 

The factor bd2/a in formula (33) is a constant for a given 
omegatron configuration, so that the drift-off y d r  is propor- 
tional to the function K(k, C ) .  In figure 4 the function K(k, C )  
has been drawn. 

Connected with this function K =  K ( k ,  C) (34) is the func- 
tion C= C(k, K)  ( 3 5 )  for which we can write 

- 2Kk + (1 - k2)1!2 1 
(36) -_ 

2k‘ C(k, K ) =  2 sin-1 k 

In figure 5 this function has been drawn for discrete values of 
K. The relation (24), which gives the collection ranges for the 
different collectors, can be transferred into 

a a 
bd2 bd2 

K - 3 1 ~  - 31 - < K(k, C) < K-L= - 1 - for collector C1 

K-1= - 1 - a < K(k, C )  < K+L = + 1 - a for collector C2 
bd2 bd2 

K+l = + 1 - a < K(k, C )  < Kt31 = + 31 - a for collector C3 
bd2 bd2 

(37) 

K-32, K-1, . . . K-31 are discrete values for K in a given 
omegatron. At a given rf and dc field the function C ( k ,  K ) =  
(2a’/a) (albd) has a constant value. The intersection of 
C(k, K)=constant with (K-31, K-z), (KL, K+z) and (K+1, 
K + ~ z )  gives the peak distribution over the collectors C1, C2 
and C3. It can be seen from figure 5 that the peak frequency 
is shifted by variation of C. C= (2a’/a) (albd) depends on the 
rf field a and the drift-off field a’; the factor a/bd is a constant 
for a given omegatron configuration. Furthermore, the 
frequency is shifted by the dc trapping field. It follow7s 
from (4a) that 

(38) 

Though the theory of rf drift-off is new, all simple omega- 
trons with a nonuniform rf field show this effect. The extent 
of advantage of this effect depends on the place of the collector 
and the dimensions of the collection range. The theory 
described by Petley and Morris (1968) can be applied only 

R * = (R2 - p ’ ) 1 / 2 2  R - p’/2n. 
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Figure 6 This three-dimensional display of measurements 
shows a number of mass peaks recorded at distinct values 
of the drift-off field a'. a being constant, a' is proportional 
to C(k, K ) .  The frequency shift k =  h w / A w l  is indicated. 
The peak height is proportional to the measured ion current 

on the collector. The peak shift is in good agreement with 
the shift theoretically indicated in figure 5. The resolving 
power is up to a factor 6 better than the classical value given 
by 27. More details of this measurement are to be published. 

on omegatrons with a uniform rf field. The elongated shape 
with hyperbolic electrodes may be the most favourable shape 
for an omegatron. For, then the coefficients b and b' deter- 
mined in $2, which were only valid for the plane z=O, can 
be applied in the entire omegatron. Consequently, we obtain 
a frequency shift of R*- Cl= - P'/2Q no longer being 
dependent on the place in the omegatron. This is one of the 
conditions to obtain a great resolving power with small rf 
signals. The coefficient b which causes the rf drift-off is also 
independent of the place in a quadrupole omegatron. Some 
typical results of such a quadrupole omegatron are given in 
figure 6. 
Appendix 1 Review of the theory of the ion trajectories in a 
uniform field 
Ion trajectories in a uniform field are determined by the 
differential equations (4) and (5) with boundary conditions 
(8) and p = O .  This system can be resolved elementarily by 
(see $3) 

w 
sin(ut++)-cos Qtsin+-- sin f i tcos+ R 

cos 4 + cos + cos Rt R x -  (R:z;n"z 

1 R 
--cos(wt++)-sin+sinfit  . 

('41) 

w 

The influence of the initial velocities and of the terms with 
forefactor a/@ can be neglected. a/@ is assumed to be 
small with respect to a/RAw, which is consistent with the 
assumption that A w / f i e  1 : 

From this it follows that 

a a 
Q A u  BAw 

y=- sin +Aut= __ sin +Aut. 

Appendix 2 The influence of a uniform dc field on the ion 
trajectories 
In equation (4a) the influence of a dc field in the x direction 
is given by the term a'. We consider P= P ' = O :  

x+Cl'2x=asin (wt++)+R$(O)+a' (4b) 

y =  - Q(x-x(0))+i.(0). ( 5 )  

X=Xu+ Xdc (A51 

Y = Y u + Y d c .  (A61 

The resolutions of this system are given by 

The resolutions xu and yu  have been given by (14) and (Al), 
whilst 

a' a' a' a' 
&Q Q2 B BQ 

Ydc=- -  t+- sinGt=--t+-sinQt.  (A8) 

The influence of the term Xdc on the given derivation from the 
rf drift-off ( P # O )  is negligible, which appears from the 
relative perturbation term : 

t t ,  
a' 

sin n(ti - 7) BR - (1 -cos RT) sin (UT+ 4) d7. 

0 0 
(A91 

In $3 only the asymptotic behaviour of Ydc given by 

is important. 
Appendix 3 Initial velocity of the ions 
The velocity distribution of the gas particles at equilibrium 
at a certain temperature is given by the Maxwell distribution. 
The ionization of the gas occurs with an electron beam of 
about 90 eV. If the gas is ionized but not dissociated the 
energy distribution is only slightly changed. So, for a good 
approximation we can use the Maxwell distribution. A simple 
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notation for the Maxwell distribution can be obtained by 
transformation from Cartesian to cylindrical coordinates in 
the velocity space: 

X = k  cos 5 
j = k  sin 5 ( A l l )  
i= i. 

The velocity distribution in the plane (i, j )  = (k, 5) is 

( E;) k d t d l .  (A12)  
m 

f(k)  d? d[=- exp -- 
277kT 

The average velocity in this plane is 
r 

If under influence of the electron impact molecules dissoci- 
ate, pieces are generated each of them possessing a part of 
the energy absorbed by the ion. This process mainly occurs 
in organic molecules (Brunnee-Voshage 1963). In this case it 
is difficult to estimate the velocity of the obtained ions. 
Appendix 4 Numerical data 
In this appendix some physical constants are given. Further- 
more some values of the magnitude of the field, as they were 
found to occur in the omegatron considered by us, are given. 
With the aid of these data some neglected quantities are finally 
verified. 

eB 
m Q=- rad s-l 

e= 1.6 x 10-19 C 
m=iMmo kg 

mo= 1.66 x 
M is mass in a.m.u. 

kg- 1 a.m.u. 

For the performance of an omegatron a magnet with a 
strength of about 0.4 T is often used: 

B z  0.4 T. 

In a long omegatron which measures 2 cm x 2 cm x 5 cm an 
rf voltage with an amplitude of Vrf V gives for the magnitudes 
defined in formula ( 1 )  the following values : 

a z 5 0  V r f V m - l  

b z 5  x lo3 Vrf  V m-2. 

Usually Vr f= l  or 2 V  is applied. d-10-2m is the usual 
collector distance. 

P/n2 : with the above-mentioned numerical magnitudes 
f i j Q 2 <  1 can now be verified: 

For M <  100 a.m.u. and Vrf= 1 or 2 V, P,'Q2< 1 is valid. 
h w i Q :  in the derivation of formula (20) terms are neglected 

on account of the assumption that j Aw;Q 1 Q 1 .  This assump- 
tion is satisfied by those ions which can be detected, i.e. for 
which 

Then with the above-mentioned numerical magnitudes 

For Mc 100 a.m.u. and Vrf= 1 or 2 V I h w / Q  I e 1 is valid. 

Appendix 5 Analysis of the residual term R3 (formula 19a) 
The magnitude of the rf drift-off of the ions reaching the 
collector, i.e. for which 1 k I < 1, is of experimental importance. 
Therefore the residual term R3 is considered for I k I < 1.  
With the transformation to cylindrical coordinates as given 
in ( A l l ) ,  from (19a) it follows that 

4BI. 
a 

- 2 COS + COS (+Aut+ 4)- - COS (+Awt+ ++ 5) 

('414) 

With the aid of the numerical data in Appendix 3 and 4 
the magnitude of 113 can be determined. The greatest contri- 
bution can be provided by the term containing the initial 
velocity k: 

In illustration, suppose t is equal to the average thermal 
velocity in the plane (k, c), then with R= 300 K, B=0.4 T 
and d= m the following inequality is valid: 

On account of the above-mentioned the residual term R3 
has been neglected in first approximation. 
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