12 research outputs found

    In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells

    Get PDF
    We characterized the in vivo importance of the homologous recombination factor RAD54 for the developing mouse brain cortex in normal conditions or after ionizing radiation exposure. Contrary to numerous homologous recombination genes, Rad54 disruption did not impact the cortical development without exogenous stress, but it dramatically

    Identification of Novel Human Damage Response Proteins Targeted through Yeast Orthology

    Get PDF
    Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74%) of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators

    KIN17 encodes an RNA-binding protein and is expressed during mouse spermatogenesis

    No full text
    Genotoxic agents deform DNA structure thus eliciting a complex genetic response allowing recovery and cell survival. The Kin17 gene is up-regulated during this response. This gene encodes a conserved nuclear protein that shares a DNA-binding domain with the bacterial RecA protein. The KIN17 protein binds DNA and displays enhanced expression levels in proliferating cultured cells, suggesting a role in nuclear metabolism. We investigated this by studying the expression profile of KIN17 protein during mouse spermatogenesis. As expected, the expression level of Kin17 is higher in proliferating than in differentiated cells. KIN17 is selectively extracted from this tissue by detergents and a fraction was tightly associated with the nuclear matrix. Germinal cells ubiquitously express Kin17 and the protein is located mainly in the nucleus except in elongated spermatids where cytoplasmic staining is also observed. Sertoli and germ cells that are no longer mitotically active express KIN17, suggesting a general role in all testicular cell types. In adult testis a significant proportion of KIN17 co-purifies with polyadenylated RNA. KIN17 directly binds RNA, preferentially poly(G) and poly(U) homopolymers. These results together with the identification of KIN17 as a component of the human spliceosome indicate that this protein may participate in RNA processing

    Rad54 is required for the normal development of male and female germ cells and contributes to the maintainance of their genome integrity after genotoxic stress

    Get PDF
    Rad54 is an important factor in the homologous recombination pathway of DNA double-strand break repair. However, Rad54 knockout (KO) mice do not exhibit overt phenotypes at adulthood, even when exposed to radiation. In this study, we show that in Rad54 KO mouse the germline is actually altered. Compared with the wild-type (WT) animals, these mice have less premeiotic germ cells. This germ cell loss is found as early as in E11.5 embryos, suggesting an early failure during mutant primordial germ cells development. Both testicular and ovarian KO germ cells exhibited high radiation sensitivity leading to a long-term gametogenesis defect at adulthood. The KO female germline was particularly affected displaying decreased litter size or sterility. Spermatogenesis recovery after irradiation was slower and incomplete in Rad54 KO mice compared with that of WT mice, suggesting that loss of germ stem cell precursors is not fully compensated along the successive rounds of spermatogenesis. Finally, spermatogenesis recovery after postnatal irradiation is in part regulated by glial-cell-line-derived neurotrophic factor (GDNF) in KO but not in irradiated WT mice, suggesting that Sertoli cell GDNF production is stimulated upon substantial germ cell loss only. Our findings suggest that Rad54 has a key function in maintaining genomic integrity of the developing germ cells

    Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein

    No full text
    International audienceIn solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance
    corecore