93 research outputs found
Damping of dHvA oscillations and vortex-lattice disorder in the peak-effect region of strong type-II superconductors
The phenomenon of magnetic quantum oscillations in the superconducting state
poses several questions that still defy satisfactory answers. A key
controversial issue concerns the additional damping observed in the vortex
state. Here, we show results of \mu SR, dHvA, and SQUID magnetization
measurements on borocarbide superconductors, indicating that a sharp drop
observed in the dHvA amplitude just below H_{c2} is correlated with enhanced
disorder of the vortex lattice in the peak-effect region, which significantly
enhances quasiparticle scattering by the pair potential.Comment: 4 pages 4 figure
Magnetic quantum oscillations in borocarbide superconductors
We report systematic de Haas–van Alphen (dHvA) investigations in the normal and superconducting
state of RNi₂B₂C (R = Y and Lu). The observed rich frequency spectrum of the dHvA signals results from a
rather complex electronic band structure with different open and closed Fermi-surface sheets. From our data
in combination with full-potential local-orbital calculations we are able to extract the angular-resolved
mass-enhancement factors, λ, for different bands. We find a strong anisotropy and band dependence of λ,
clearly reflecting the multiband character of the superconductivity in RNi₂B₂C. We further were able to
resolve dHvA oscillations deep into the superconducting state. The observed additional damping of the
dHvA amplitudes is much less than expected from most theories. This hints at a reduced or even zero superconducting
gap for the detected Fermi surface
Large Broadening of the Superconducting Transition by Fluctuations in a 3D Metal at High Magnetic Fields: The MgB case
It is shown that the transition to the low temperature superconducting state
in a 3D metal at high magnetic field is smeared dramatically by thermal
fluctuation of the superconducting order parameter. The resulting
superconducting-to-normal crossover occurs in a vortex liquid state which is
extended well below the mean-field . Application to MgB yields
good quantitative agreement with recently reported data of dHvA oscillation in
the superconducting state
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal
We report on an anomalous behavior of the spin-splitting zeros in the de
Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic
superconductor. The zeros as well as the angular dependence of the amplitude of
the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK)
prediction. In contrast, the angular dependence of the fundamental dHvA
amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas signal
follow the LK theory. We can explain this behavior by small chemical-potential
oscillations and find a very good agreement between theory and experiment. A
detailed wave-shape analysis of the dHvA signal corroborates the existence of
an oscillating chemical potential
The Fulde-Ferrell-Larkin-Ovchinnikov State in the Organic Superconductor k-(BEDT-TTF)2Cu(NCS)2 as Observed in Magnetic Torque Experiments
We present magnetic-torque experiments on the organic superconductor
k-(BEDT-TTF)2Cu(NCS)2 for magnetic fields applied parallel to the 2D
superconducting layers. The experiments show a crossover from a second-order to
a first-order transition when the upper critical field reaches 21 T. Beyond
this field, which we interpret as the Pauli limit for superconductivity, the
upper critical field line shows a pro-nounced upturn and a phase transition
line separates the superconducting state into a low- and a high-field phase. We
interpret the data in the framework of a Fulde-Ferrell-Larkin-Ovchinnikov
state.Comment: 2 pages, 1 figur
Over winter microbial processes in a Svalbard snow pack:an experimental approach
International audienceSnow packs cover large expanses of Earth’s land surface, making them integral components of the cryosphere in terms of past climate and atmospheric proxies, surface albedo regulators, insulators for other Arctic environments and habitats for diverse microbial communities such as algae, bacteria and fungi. Yet, most of our current understanding of snow pack environments, specifically microbial activity and community interaction, is limited to the main microbial growing season during spring ablation. At present, little is known about microbial activity and its influence on nutrient cycling during the subfreezing temperatures and 24-h darkness of the polar winter. Here, we examined microbial dynamics in a simulated cold (−5°C), dark snow pack to determine polar winter season microbial activity and its dependence on critical nutrients. Snow collected from Ny-Ålesund, Svalbard was incubated in the dark over a 5-week period with four different nutrient additions, including glacial mineral particles, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and a combined treatment of DIN plus DIP. Data indicate a consumption of dissolved inorganic nutrients, particularly DIN, by heterotrophic communities, suggesting a potential nitrogen limitation, contradictory to phosphorus limitations found in most aquatic environments. 16S amplicon sequencing also reveal a clear difference in microbial community composition in the particulate mineral treatment compared to dissolved nutrient treatments and controls, suggesting that certain species of heterotrophs living within the snow pack are more likely to associate with particulates. Particulate phosphorus analyses indicate a potential ability of heterotrophic communities to access particulate sources of phosphorous, possibly explaining the lack of phosphorus limitation. These findings have importance for understanding microbial activity during the polar winter season and its potential influences on the abundance and bioavailability of nutrients released to surface ice and downstream environments during the ablation season
Upper critical field and de Haas-van Alphen oscillations in KOsO measured in a hybrid magnet
Magnetic torque measurements have been performed on a KOsO single
crystal in magnetic fields up to 35.3 T and at temperatures down to 0.6 K. The
upper critical field is determined to be 30 T. De Haas-van Alphen
oscillations are observed. A large mass enhancement of (1+) = = 7.6 is found. It is suggested that, for the large upper critical
field to be reconciled with Pauli paramagnetic limiting, the observed mass
enhancement must be of electron-phonon origin for the most part.Comment: 4 pages, 4 figures, published versio
Recommended from our members
Magnetic-field- and temperature-dependent fermi surface of CeBiPt
The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov–de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification
Recommended from our members
Magnetic-field- and temperature-dependent fermi surface of CeBiPt
The half-Heusler compounds CeBiPt and LaBiPt are semimetals with very low charge-carrier concentrations as evidenced by Shubnikov–de Haas (SdH) and Hall-effect measurements. Neutron-scattering results reveal a simple antiferromagnetic structure in CeBiPt below TN = 1.15 K. The band structure of CeBiPt sensitively depends on temperature, magnetic field and stoichiometry. Above a certain, sample-dependent, threshold field (B>25 T), the SdH signal disappears and the Hall coefficient reduces significantly. These effects are absent in the non-4f compound LaBiPt. Electronic-band-structure calculations can well explain the observed behaviour by a 4f-polarization-induced Fermi-surface modification
- …