95 research outputs found
The LSST Data Mining Research Agenda
We describe features of the LSST science database that are amenable to
scientific data mining, object classification, outlier identification, anomaly
detection, image quality assurance, and survey science validation. The data
mining research agenda includes: scalability (at petabytes scales) of existing
machine learning and data mining algorithms; development of grid-enabled
parallel data mining algorithms; designing a robust system for brokering
classifications from the LSST event pipeline (which may produce 10,000 or more
event alerts per night); multi-resolution methods for exploration of petascale
databases; indexing of multi-attribute multi-dimensional astronomical databases
(beyond spatial indexing) for rapid querying of petabyte databases; and more.Comment: 5 pages, Presented at the "Classification and Discovery in Large
Astronomical Surveys" meeting, Ringberg Castle, 14-17 October, 200
Recommended from our members
Designing a multi-petabyte database for LSST
The 3.2 giga-pixel LSST camera will produce over half a petabyte of raw images every month. This data needs to be reduced in under a minute to produce real-time transient alerts, and then cataloged and indexed to allow efficient access and simplify further analysis. The indexed catalogs alone are expected to grow at a speed of about 600 terabytes per year. The sheer volume of data, the real-time transient alerting requirements of the LSST, and its spatio-temporal aspects require cutting-edge techniques to build an efficient data access system at reasonable cost. As currently envisioned, the system will rely on a database for catalogs and metadata. Several database systems are being evaluated to understand how they will scale and perform at these data volumes in anticipated LSST access patterns. This paper describes the LSST requirements, the challenges they impose, the data access philosophy, and the database architecture that is expected to be adopted in order to meet the data challenges
Diluted II-VI Oxide Semiconductors with Multiple Band Gaps
We report the realization of a new multi-band-gap semiconductor. The highly
mismatched alloy Zn1-yMnyOxTe1-x has been synthesized using the combination of
oxygen ion implantation and pulsed laser melting. Incorporation of small
quantities of isovalent oxygen leads to the formation of a narrow,
oxygen-derived band of extended states located within the band gap of the
Zn1-yMnyTe host. When only 1.3% of Te atoms is replaced with oxygen in a
Zn0.88Mn0.12Te crystal (with band gap of 2.32 eV) the resulting band structure
consists of two direct band gaps with interband transitions at ~1.77 eV and 2.7
eV. This remarkable modification of the band structure is well described by the
band anticrossing model in which the interactions between the oxygen-derived
band and the conduction band are considered. With multiple band gaps that fall
within the solar energy spectrum, Zn1-yMnyOxTe1-x is a material perfectly
satisfying the conditions for single-junction photovoltaics with the potential
for power conversion efficiencies surpassing 50%.Comment: 12 pages, 4 figure
REPORT FROM THE FIRST WORKSHOP ON EXTREMELY LARGE DATABASES
近些年,工业界和科学领域的数据集,无论在数量上还是在复杂性上,都有了巨大的增长。最大的事务型数据库和数据仓库,再也无法使用现成的商业数据库管理系统产品进行有效地存储和管理。目前,也存在其他一些专门讨论数据库和数据仓库的论坛,但是,他们通常只关注小规模数据问题,而且往往不怎么关注实际解决方案以及对数据库厂商的影响。鉴于目前的超大规模数据库的用户还比较少(但是影响力很大,并且正在迅速增加),并且缺少在超大规模数据库方面交流经验知识的机会,因此,我们组织举办了超大数据库会议。本文是这次大会的讨论和相关活动的总结报告
Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS
The Large Synoptic Survey Telescope (LSST) will be a large, wide-field
ground-based system designed to obtain, starting in 2015, multiple images of
the sky that is visible from Cerro Pachon in Northern Chile. About 90% of the
observing time will be devoted to a deep-wide-fast survey mode which will
observe a 20,000 deg region about 1000 times during the anticipated 10
years of operations (distributed over six bands, ). Each 30-second long
visit will deliver 5 depth for point sources of on average.
The co-added map will be about 3 magnitudes deeper, and will include 10 billion
galaxies and a similar number of stars. We discuss various measurements that
will be automatically performed for these 20 billion sources, and how they can
be used for classification and determination of source physical and other
properties. We provide a few classification examples based on SDSS data, such
as color classification of stars, color-spatial proximity search for wide-angle
binary stars, orbital-color classification of asteroid families, and the
recognition of main Galaxy components based on the distribution of stars in the
position-metallicity-kinematics space. Guided by these examples, we anticipate
that two grand classification challenges for LSST will be 1) rapid and robust
classification of sources detected in difference images, and 2) {\it
simultaneous} treatment of diverse astrometric and photometric time series
measurements for an unprecedentedly large number of objects.Comment: Presented at the "Classification and Discovery in Large Astronomical
Surveys" meeting, Ringberg Castle, 14-17 October, 200
Recommended from our members
Highly Mismatched Alloys for Intermediate Band Solar Cells
It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band
Synthesis and optical properties of II-O-VI highly mismatched alloys
We have synthesized ternary and quaternary diluted II-VI oxides using the combination of O ion implantation and pulsed laser melting. CdO{sub x}Te{sub 1-x} thin films with x up to 0.015, and the energy gap reduced by 150 meV were formed by O{sup +}-implantation in CdTe followed by pulsed laser melting. Quaternary Cd{sub 0.6}Mn{sub 0.4}O{sub x}Te{sub 1-x} and Zn{sub 0.88}Mn{sub 0.12}O{sub x}Te{sub 1-x} with mole fraction of incorporated O as high as 0.03 were also formed. The enhanced O incorporation in Mn-containing alloys is believed to be due to the formation of relatively strong Mn-O bonds. Optical transitions associated with the lower (E{sub -}) and upper (E{sub +}) conduction subbands resulting from the anticrossing interaction between the localized O states and the extended conduction states of the host are clearly observed in these quaternary diluted II-VI oxides. These alloys fulfill the criteria for a multiband semiconductor that has been proposed as a material for making high efficiency, single-junction solar cells
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
- …