103 research outputs found

    Tomography of the Darcy velocity from self-potential measurements

    Get PDF
    An algorithm is developed to interpret self-potential (SP) data in terms of distribution of Darcy velocity of the ground water. The model is based on the proportionality existing between the streaming current density and the Darcy velocity. Because the inverse problem of current density determination from SP data is underdetermined, we use Tikhonov regularization with a smoothness constraint based on the differential Laplacian operator and a prior model. The regularization parameter is determined by the L-shape method. The distribution of the Darcy velocity depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. A priori hydraulic information can be introduced in the inverse problem. This approach is tested on two synthetic cases and on real SP data resulting from infiltration of water from a ditch

    Investigating the Stratigraphy of an Alluvial Aquifer Using Crosswell Seismic Traveltime Tomography

    Get PDF
    In this study, we investigate the use of crosswell P-wave seismic tomography to obtain spatially extensive information about subsurface sedimentary architecture and heterogeneity in alluvial aquifers. Our field site was a research wellfield in an unconfined aquifer near Boise, Idaho. The aquifer consists of a ~ 20-m-thick sequence of alluvial cobble- and-sand deposits, which have been subdivided into five stratigraphic units based on neutron porosity logs, grainsize analysis, and radar reflection data. We collected crosswell and borehole-to-surface seismic data in wells 17.1 m apart. We carefully considered the impact of well deviation, data quality control, and the choice of inversion parameters. Our linearized inverse routine had a curved-ray forward model and used different grids for forward modeling and inversion. An analysis of the model covariance and resolution matrices showed that the velocity models had an uncertainty of \u3c10 m\u3e/s, a vertical resolution of ~ 1 m, and a horizontal resolution of ~ 5 m. The velocity in the saturated zone varied between 2100 m/s and 2700 m/s. Inclusion of the borehole-to-surface data eliminated the Xshaped pattern that is a common artifact in crosswell tomography, and the increased angular coverage also improved the accuracy of the model near the top of the tomogram. The final velocity model is consistent with previous stratigraphic analyses of the site, although the locations of some of the unit boundaries differ by as much as 2 m in places. The results of this study demonstrate that seismic tomography can be used to image the sedimentary architecture of unconsolidated alluvial aquifers, even when the lithologic contrasts between units are subtle

    A virtual reality extended neuropsychological assessment for topographical disorientation: a feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Topographical disorientation represents one of the main consequences of brain injury. Up to now several methodological approaches have been used in the assessment of the brain injured patient's navigational abilities showing a moderate correlation with the impairments observed in everyday contexts.</p> <p>Methods</p> <p>We propose a combination of standardized neuropsychological tests and a more situated virtual reality-based assessment for the evaluation of spatial orientation in brain injured patients.</p> <p>Results</p> <p>When tested with this virtual reality integrated procedure patients showed performance and execution times congruent with their neuropsychological evaluation. When compared to a control group, patients revealed significantly slower times and greater errors in solving virtual reality based spatial tasks.</p> <p>Conclusion</p> <p>The use of virtual reality, when combined with classical neuropsychological tests, can provide an effective tool for the study of topographical disorientation.</p

    Damage to the prefrontal cortex increases utilitarian moral judgements

    Get PDF
    The psychological and neurobiological processes underlying moral judgement have been the focus of many recent empirical studies1–11. Of central interest is whether emotions play a causal role in moral judgement, and, in parallel, how emotion-related areas of the brain contribute to moral judgement. Here we show that six patients with focal bilateral damage to the ventromedial prefrontal cortex (VMPC), a brain region necessary for the normal generation of emotions and, in particular, social emotions12–14, produce an abnor- mally ‘utilitarian’ pattern of judgements on moral dilemmas that pit compelling considerations of aggregate welfare against highly emotionally aversive behaviours (for example, having to sacrifice one person’s life to save a number of other lives)7,8. In contrast, the VMPC patients’ judgements were normal in other classes of moral dilemmas. These findings indicate that, for a selective set of moral dilemmas, the VMPC is critical for normal judgements of right and wrong. The findings support a necessary role for emotion in the generation of those judgements

    How do we get there? Effects of cognitive aging on route memory

    Get PDF
    © 2017 The Author(s) Research into the effects of cognitive aging on route navigation usually focuses on differences in learning performance. In contrast, we investigated age-related differences in route knowledge after successful route learning. One young and two groups of older adults categorized using different cut-off scores on the Montreal Cognitive Assessment (MoCA), were trained until they could correctly recall short routes. During the test phase, they were asked to recall the sequence in which landmarks were encountered (Landmark Sequence Task), the sequence of turns (Direction Sequence Task), the direction of turn at each landmark (Landmark Direction Task), and to identify the learned routes from a map perspective (Perspective Taking Task). Comparing the young participant group with the older group that scored high on the MoCA, we found effects of typical aging in learning performance and in the Direction Sequence Task. Comparing the two older groups, we found effects of early signs of atypical aging in the Landmark Direction and the Perspective Taking Tasks. We found no differences between groups in the Landmark Sequence Task. Given that participants were able to recall routes after training, these results suggest that typical and early signs of atypical aging result in differential memory deficits for aspects of route knowledge
    • …
    corecore