141 research outputs found

    Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC

    Get PDF
    We present a new fabrication method for epitaxial graphene on SiC which enables the growth of ultra-smooth defect- and bilayer-free graphene sheets with an unprecedented reproducibility, a necessary prerequisite for wafer-scale fabrication of high quality graphene-based electronic devices. The inherent but unfavorable formation of high SiC surface terrace steps during high temperature sublimation growth is suppressed by rapid formation of the graphene buffer layer which stabilizes the SiC surface. The enhanced nucleation is enforced by decomposition of polymer adsorbates which act as a carbon source. With most of the steps well below 0.75 nm pure monolayer graphene without bilayer inclusions is formed with lateral dimensions only limited by the size of the substrate. This makes the polymer assisted sublimation growth technique the most promising method for commercial wafer scale epitaxial graphene fabrication. The extraordinary electronic quality is evidenced by quantum resistance metrology at 4.2 K with until now unreached precision and high electron mobilities on mm scale devices.Comment: 20 pages, 6 Figure

    Laser-induced phase separation of silicon carbide

    Get PDF
    Understanding the phase separation mechanism of solid-state binary compounds induced by laser-material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (???2.5 nm) and polycrystalline silicon (???5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system.open

    Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles

    Get PDF
    Atom implantation in graphene or graphene nanoribbons offers a rich opportunity to tune the material structure and functional properties. In this study, zigzag graphene nanoribbons with Ti or Sn adatoms stabilised on a double carbon vacancy site are theoretically studied to investigate their sensitivity to sulfur-containing gases (H2S and SO2). Due to the abundance of oxygen in the atmosphere, we also consider the sensitivity of the structures in the presence of oxygen. Density functional theory calculations are performed to determine the adsorption geometry and energetics, and nonequilibrium Green's function method is employed to compute the current–voltage characteristics of the considered systems. Our results demonstrate the sensitivity of both Ti- and Sn-doped systems to H2S, and the mild sensitivity of Ti-doped sensor systems to SO2. The Ti-doped sensor structure exhibits sensitivity to H2S with or without oxidation, while oxidation of the Sn-doped sensor structure reduces its ability to adsorb H2S and SO2 molecules. Interestingly, oxygen dissociates on the Ti-doped sensor structure, but it does not affect the sensor's response to the H2S gas species. Oxidation prevents the dissociation of the H–S bond when H2S adsorbs on the Ti-doped structure, thus enhancing its reusability for this gas species. Our study suggests the potential of Ti- and Sn-doped graphene in selective gas sensing, irrespective of the sensing performance of the bulk oxides

    Matrix-Variate Discriminative Analysis, Integrative Hypothesis Testing, and Geno-Pheno A5 Analyzer

    Full text link
    Abstract. A general perspective is provided on both on hypothesis testing and discriminative analyses, by which matrix-variate discriminative analyses are pro-posed based on the matrix normal distribution, featured by a bi-linear extension of Fisher linear discriminant analysis and a further extension to binary variables. Moreover, a general formulation is proposed for integrative hypothesis testing and five typical categories are summarized. Furthermore, major techniques for varia-ble selection are briefly elaborated. Finally, taking analyses of gene expression and exome sequencing as examples, we further propose a general procedure called Geno-Pheno A5 Analyzer for integrative discriminant analysis

    Structural requirements for the utilization of ascorbate analogues in the prolyl 4-hydroxylase reaction.

    No full text
    The ability of structural analogues of ascorbate to serve as substitutes for this reducing agent in the prolyl 4-hydroxylase reaction was studied. In experiments using the purified enzyme, variations of the compounds' side chain were compatible with co-substrate activity. The presence of very large hydrophobic substituents or a positively charged group caused an increase in the observed Km values. A negative charge and smaller modifications did not change the affinity to the enzyme when compared with L-ascorbate. 6-Bromo-6-deoxy-L-ascorbate had a lower Km than the physiological reductant. Substitution at the -OH group in ring position 3 prevented binding to the enzyme. The same pattern of activity was observed when the full and uncoupled prolyl 4-hydroxylase reactions were studied. The Vmax. values with all compounds were similar. The reaction of microsomal prolyl 4-hydroxylase was supported by D-isoascorbate, O6-tosyl-L-ascorbate and 5-deoxy-L-ascorbate, giving the same dose-response behaviour as L-ascorbate itself. Again, 6-bromo-6-deoxy-L-ascorbate gave a lower Km and a similar Vmax. value. L-Ascorbic acid 6-carboxylate produced substrate inhibition at concentrations above 0.3 mM. The Km and Vmax. values calculated from concentrations up to 0.2 mM were similar to those of L-ascorbate. The enzyme activity observed with 6-amino-6-deoxy-L-ascorbate was very low in the microsomal hydroxylation system. The calculated Vmax. value was lower than that of L-ascorbate, suggesting a restriction of the access of this compound to the enzyme
    corecore