
NANO EXPRESS Open Access

On the Current Drive Capability of Low
Dimensional Semiconductors: 1D versus 2D
Y. Zhu* and J. Appenzeller

Abstract

Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic
applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its
two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions
derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect
transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.
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Background
The trend of scaling CMOS technology toward ever
smaller dimensions has resulted in device structures
that resemble nanowires in terms of their cross-
sectional dimensions, i.e., FinFETs and TriGates [1–6]
are approaching heights and widths of few tens of
nanometers. Depending on the nature of the channel
material, and in particular if materials other than sili-
con are considered, size quantization effects can be
relevant [7, 8] in these types of structures. Envisioning
that the current trend of miniaturization prevails, one-
dimensional modes will ultimately carry the current
from source to drain. In other words, in order to con-
tinue channel length scaling, low-dimensional channel
structures are introduced at the expense of lower
current drive capabilities per wire. To compensate for
the loss of material that is introduced by separating
the individual wire structures, arrays of the same have
to be built. The obvious question arising in this con-
text is “Under which circumstances does this approach
make sense and when does it fail or – as we will show
below – under which conditions is it desirable to oper-
ate in the one-dimensional transport mode regime
even without requiring the additional benefit of chan-
nel length scaling” [9–13].
To shine some light on these questions, we have stud-

ied a model system that consists of a two-dimensional

gated channel with ideal source/drain contacts operating
in the ballistic regime. This system is then “patterned”
into individual one-dimensional channels of various
dimensions and spacing between them. Note that the
structures under consideration remain planar and do
not provide the added advantage of effectively increasing
the device width in the vertical direction (as in the case
of FinFETs and TriGates). A comparison between both
the on- and off-state performance of the various systems
when operating in the quantum capacitance limit, i.e.,
the conduction and valence bands of the structure are
under ideal gate control, reveals the desired operation
window for low-dimensional nanowire arrays which goes
beyond the arguments that typically motivate the intro-
duction of FinFETs and TriGates.

Methods
Let us consider an array of 1D nanowires with width a
that is separated by a gap of dimension b, as shown in
Fig. 1. The total width of the array is assumed to be
W = n ⋅ (a + b), where n is the number of wires.
Manipulating a and b and comparing the conductivity
of the array with a 2D film of width W allow gaining
insights into the impact of size quantization and, as
will be shown, indicate a window of operation for
which an array of 1D wires can outperform a 2D film
despite the material loss associated with introducing
“cuts” of width b.
To perform a quantitative analysis, we first consider gra-

phene and then extend our calculation to a semiconductor
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with parabolic E(k) relation. Starting from the two-
dimensional linear energy dispersion of graphene
around the Dirac point, size quantization results in a
set of one-dimensional modes as depicted in Fig. 1.
The actual energy spacing between the individual 1D
modes becomes larger (including the band gap) if a
becomes smaller. At the same time, the number of
modes M1D(E) becomes discrete in 1D. The band
lineup under zero gate and drain bias conditions for
each 1D wire is defined as the minimum of the lowest
conduction band edge EC0 in the channel aligning with
the source and drain Fermi levels in the contacts. All
wires are assumed to respond in the same manner to
the gate and drain field (see bottom part of Fig. 1). In
case of the 2D graphene film, the threshold voltage is
defined as the Dirac point. Through this approach of
setting the threshold voltage to zero for both 1D wires
and 2D films at the conduction band edge, a compari-
son of the device on-state needs to be concerned only
with the gate voltage VGS rather than the overdrive
voltage VGS − Vth.
Under the conditions discussed above, the current

through the device can be calculated using Landauer
formalism. For ease of handling the analytical expres-
sions, zero temperature conditions and ballistic trans-
port in the quantum capacitance limit (QCL) are
assumed. In the appendix, our calculations are ex-
tended toward 300 K (Additional file 1: Figure S1)
showing that the analytical results obtained for T = 0 K
as discussed in the following capture all relevant
aspects and allow to understand the critical trends even
quantitatively.
Within this model the electron current density

(which is the only component considered) can be writ-
ten as

I2D ¼ W
q
h

Z
EC

M2D f S−f Dð ÞdE ð1Þ

Here, q is the electron charge, M2D is the number of
propagating modes per unit width in the 2D device,

M2D ¼ h
2D2D

Änveff , D2D is the full density of states (in-
cluding +k and −k-states), veff is the average electron
velocity in transport direction, and fS and fD are the
source and drain Fermi distributions, respectively.
If a positive gate bias is applied, the bottom of the

conduction band is pulled down by exactly the amount
of qVGS because of the assumed operation in the
quantum capacitance limit (QCL) [14, 15] and a positive
drain voltage moves the drain Fermi level down by qVDS.
Note that the assumption of operation in the QCL is
justified for materials with low density of states when
aggressively scaled gate oxides are considered. Further-
more, it should be noted that operation in the QCL is
harder to achieve in the 2D case than for 1D due to the
larger density of states in 2D. Thus, assuming that both
1D and 2D follow a one-to-one band movement with
the gate voltage will potentially underestimate (but not
overestimate) the amount of current by which the 1D
current can surpass its 2D counterpart.
To calculate the current through the graphene transis-

tor we note that (i) the current in a uniform 2D system
is proportional to the device width W, (ii) the energy
dispersion E(k) of graphene close to the Dirac point can
be approximated by E = vfℏk, and (iii) the density of
states (DOS) is D2D ¼ g⋅2πE=h2v2f , where g is the degen-

eracy factor, which is 4 for graphene—accounting for
spin and valley degeneracy. To simplify the following
calculations, we set g to 1. Furthermore, (iv) the average

Fig. 1 Model system (top left), impact of VDS and VGS on the 1D mode system (top right), and visualization of parallel conduction in an array of 1D
wires (bottom)
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velocity in two dimensions is veff = 2vf/π. Under these as-
sumptions, we find

I2D ¼ Wq3

h2vf
V 2

GS VGS < VDS

I2D ¼ Wq3

h2vf
2VDSVGS−V 2

DS

� �
VGS > VDS

8>>>><
>>>>:

ð2Þ

On the other hand, the current in a one-dimensional
system is carried by 1D modes with discrete k-vector
values in the quantization direction. For simplicity, we
assume here hard wall potentials at the edges of the
wires with width a, resulting in an energetic spacing
between modes of ΔE = hvf/2a. This is a simple yet valid
assumption if comparing our findings with results from
first-principle calculation [16, 17]. Only modes in the
energy interval between the source and the drain Fermi
level contribute to the current. Moreover, D1D ⋅ v1D = 2/h
for g = 1, independent of the actual energy dispersion.
Assuming again zero temperature conditions and ballis-
tic transport in the quantum capacitance limit as in the
2D case and noting that veff = vf in the 1D case, the 1D
current can be expressed as

I1D ¼ n
q
h

Z
M1D Eð Þ f S−f Dð ÞdE ð3Þ

Here, n =W/(a + b) is the number of wires, m(E) is the
number of modes at each energy, M1D(E) = int[(E + qVGS)/
ΔE] + 1 for E > − qVGS, and m(E) = 0 for E < − qVGS. Only
currents due to electron flow in the conduction band are
considered. It seems apparent that the current through an
array of 1D structures cannot exceed the 2D current for
finite b-values. Interestingly, this statement is only correct
for qVGS and qVDS simultaneously being larger than ΔE.
In fact, as will be discussed in the following for operation
at sufficiently small bias conditions, Eq. 3 reveals higher
current levels in 1D compared to the 2D transport case.
For small bias conditions qVGS < ΔE, qVDS <ΔE, only one
mode is conducting, and Eq. 3 simplifies to

I1D ¼ Wq2

aþ bð ÞhVGS VGS < VDS

I1D ¼ Wq2

aþ bð ÞhVDS VGS > VDS

8>>>><
>>>>:

ð4Þ

From Eq. 4, the conductance of each wire is independ-
ent of material choice q2/h. Comparing Eq. 4 with Eq. 2
now reveals a different trend. While the 2D current in
Eq. 2 always shows a square-dependence on VGS and VDS

at any biased condition, the 1D current in Eq. 4 exhibits a
linear dependence on VGS and VDS at small bias values. A
crossover between I1D(VGS,VDS) and I2D(VGS,VDS) is
expected, with the 1D current being larger than the

2D current below this crossing point. It is worthwhile
mentioning at this stage again that Eq. 4 holds true in-
dependent of material choice or the details of the E(k)
relation as long as only one 1D mode is involved in
current transport.
At this point, it is worthwhile reviewing the assump-

tion of ballistic transport that has been made to allow
obtaining the simple analytical expressions from above.
For carbon nanotubes [8] and the cases of graphene and
graphene nanoribbons [18–20], operation close to the
ballistic limit has been reported, validating our approach.
However, even in the case that scattering limits the
current carrying capability of the device, Eq. 4 can still
provide useful insights into the benefit of 1D transport.
If the same scattering mechanisms prevail in the planar
and ribbon device, the current in both cases is decreased
by the same amount, and thus, the ratio between Eq. 2
and Eq. 4 remains unaltered, thus not impacting our
analysis. Only if additional scattering in the ribbon case,
e.g., due to the roughness of the edges, reduces the current
in Eq. 4 more than in the 2D case, our analysis will be
effected. In this case, the voltage range (see discussion
below) over which 1D currents can be expected to exceed
their 2D counterparts will be reduced by the same scaling
factor that impacts the current in Eq. 4 due to scattering.

Results and Discussion
ON-State Performance
Based on the above analytical framework, I–V character-
istics have been calculated for various 1D transport sce-
narios. For all simulations, a width of W = 1 μm has
been assumed. A set of conductance versus gate voltage
curves for different drain voltages is plotted in Fig. 2.
For the 1st subband, the conductance saturates at 33 ⋅
q2/h, where 33 is the total number of wires in the array,
with the conductance contribution per wire for one sub-
band being q2/h as expected from Eq. 4. The higher the
drain voltage, the larger the gate voltage needed to reach
the same conductance saturation level.
For a = 15nm, ΔE = hvf/2a ≅ 0.14 eV, which means that

at VGS =m ⋅ 0.14 V the (m + 1)th subband will start to
conduct. This situation corresponds to band diagrams 1
and 2 that illustrate the second, third subband at gate
voltages of 0.14 and 0.28 V aligned with the source
Fermi level. For VDS = 40 mV, VGS = 0.18 V (diagram 3)
maximum conductance through two subbands occurs
since the minimum of the second subband is exactly by
the amount of VDS below the source Fermi level. Thus,
even a further increase of gate voltage does not change
the conductance until the third mode starts to conduct.
Only when VGS = VDS +m ⋅ 0.14 V, the conductance
through the (m + 1)th mode will saturate. Accordingly,
for VDS = 200 mV, VGS = 200 mV (diagram 4), only the
first mode in each wire has reached its saturation
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conductance of q2/h while the second mode has not. For
gate voltage values below 200 mV, an increase in gate
voltage leads to more conduction in both, the first and
second mode. However, for gate voltages above 200 mV,
an increase in gate voltage only leads to more conduction

in the second mode. As a result, the slope of conductance
versus gate voltage decreases at this point.
Next, we compare the current levels in 1D and 2D. In

Fig. 3a, both, the 1D current (blue) and the 2D current
(red) are plotted as a function of gate voltage. It is clear

Fig. 2 Calculated conductance versus gate voltage for different drain voltages. The diagrams indicate the relative position of the 1D subbands for
the respective drain and gate voltage conditions. Diagrams 1 and 2 show the band alignment when the second, third mode starts to conduct.
Diagram 3 shows the band alignment for current saturation. Diagram 4 shows the band alignment when only the first mode is saturated but not
the second mode

Fig. 3 a ID versus VGS for both, the 1D and 2D case. b 3D plot of I1D–I2D (z-axis: I1D–I2D, x-axis: VGS, y-axis: VDS), the black line indicates where the
1D current and the 2D current are equal. c 2D projection of b. d 3D plot for gm1D–gm2D (z-axis: gm1D–gm2D, x-axis: VGS, y-axis: VDS), the black line
indicates the region where 1D has a larger transconductance
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that for small gate voltages, the 1D current can exceed
the 2D counterpart as mentioned above in the context
of Eq. 4. The crossing points are labeled from small drain
voltages to large drain voltages as: 1, 2, 3, and 4. The corre-
sponding positions are shown in Fig. 3c, and it is obvious
that for drain voltages larger than VDS=ΔE/q = 0.14 V, the
position of the crossing point occurs at the same gate volt-
age of VGS =ΔE/q = 0.14 V. For drain voltages below
0.14 V, the crossing points depend linearly on gate voltage,
and VGS approaches ΔE/2q = 0.07 V when the drain voltage
tends to zero. Note that, as stated earlier, the assumption of
operation in the QCL for both the 1D and 2D case is a
conservative estimate that it will overestimate the band
movement in the 2D case resulting in an underestimated
gate voltage range for which 1D exhibits a larger current
than 2D. In terms of transconductance gm, 1D can also
exceed the 2D case for certain bias conditions (shown in
Fig. 3d). Interestingly, this statement even holds true for
large VGS values as long as VDS is small enough because of
the onset of higher 1D modes.
Next, we will illustrate based on the DOS of 1D versus

2D how 1D currents can exceed their 2D counterparts. As
discussed before, both 1D and 2D currents can be
expressed as an energy integral of the number of conduct-
ing modes M1D, 2D(E) and the difference of the source and
drain Fermi distributions. If we compare M1D for a wire of
width a with its counterpart in 2D: aM2D, one can derive
the following expressions:

X2D ¼ aM2D ¼ 2Ea
hvf

ð5Þ

X1D ¼ M1D ¼ int
2Ea
hvf

� �
ð6Þ

Equation 5 was multiplied by the wire width a for a
proper comparison of the 2D and 1D number of modes.
Obviously, Eq. 6 is just the discrete version of Eq. 5 as
shown in Fig. 4. Depending on the choice of threshold
voltage (ΔE in case of Fig. 4a and zero in case of Fig. 4b),
X1D is smaller or larger than X2D. From Fig. 4b, one
might conclude that the 1D case is always providing lar-
ger currents, but in reality, the material loss that is cap-
tured by the above-introduced parameter b needs to be
considered as well. If we choose a = b, the material loss
results in a scenario as depicted in Fig. 4c. Under these
conditions, X1D is larger than X2D only for VGS < ΔE/q.
The exact conditions under which the 1D current can be
larger than the 2D counterpart can be calculated by
comparing ∫X1DdE and ∫X2DdE. As shown in Fig. 4c, d,
X1D is only larger for the energy region from 0 to ΔE/2,
and for the integration range (0, ΔE), ∫X1DdE and
∫X2DdE are identical. This means that for VGS larger
than ΔE/q = 0.14V, the 2D current will be always larger
which confirms the results in Fig. 3c. Equation 7 sum-
marizes the conditions under which the 1D current ex-
ceeds the 2D one:

Fig. 4 a X1D and X2D ,respectively, as defined in the text, b situation as in a after threshold voltage shift, c situation as in a after threshold voltage
shift and accounting for material loss, and d zoom of c
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qVGS <
ΔE þ qVDSð Þ

2
qVDS ≤ ΔE

qVGS < ΔE qVDS > ΔE

8<
: ð7Þ

Note that Eq. 7 describes exactly the black line in
Fig. 3c. If scattering is considered as discussed above, a
scaling parameter that captures excess scattering in the
ribbon case will have to be introduced in Eq. 7, which
will reduce the voltage range over which the 1D currents
are larger than the 2D ones.
In the following, we want to focus on the interplay

between a and b. As discussed above, the 1D current
depends on both parameters, and depending on the in-
troduced quantization conditions through a and the
material loss through b, I1D will exceed (or not) I2D. To
illustrate this point, both the 1D and the 2D currents are
plotted for different a, b-values in Fig. 5 for a linear and
in Fig. 6 for a parabolic energy dispersion.
Since in general, different E(k) dispersion relations

impact the above analysis only in so far that the density
of states and energy quantization ΔE is changed, both,
Figs. 5 and 6 show qualitatively the same dependences.
While the energy dispersion impacts the values of the

parameters a, b, VDS, and VGS for which the 1D current
can exceed the 2D counterpart, the general trends de-
scribed above prevail. In particular, Eqs. 1, 3, and 4 are
valid independent of the exact material choice. For the
details of how Eq. 2 and the number of 1D modes m(E)
are modified under the assumption of a parabolic energy
dispersion, see the appendix.
For (a,b) = (0,0), I1D becomes infinite since the number

of wires W/(a + b) contributing q2/h to the conductance
becomes infinite. Also, as expected, small b-values are in
general desirable to reduce the amount of material loss.
The a-dependence is somewhat more surprising. In fact,
we find a non-monotonic dependence of the 1D current
with a for constant b as shown in Fig. 5b. Two effects
need to be considered when a increases. On one hand,
the number of contributing wires decreases with increas-
ing a for fixed W and b. This results in a I1D ∝ 1/a trend
as depicted in Fig. 5b. On the other hand, increasing a
changes the quantization conditions per wire and de-
creases the mode spacing ΔE. The sharp increases in
current around 21, 42, and 63 nm are a result of this
effect. For these a-values, ΔE is 100, 50, and 25 meV,
respectively. From the discussion above, the number of

Fig. 5 1D current and 2D currents are plotted as a function of a and b for a linear E(k)-relation

Fig. 6 1D current and 2D currents are plotted as a function of a and b for a parabolic E(k)-relation
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contributing modes at source Fermi level is simply
int(qVGS/ΔE + 1) which implies that for a = 21, 42, and
63 nm, the second, third, and fourth mode starts con-
ducting for a VGS of 100 mV. The amount of current
change at the onset of the nth mode is proportional to
n/(n−1) which implies a current increase by a factor of
2, 1.5, and 1.33 at a = 21, 42, and 63 nm, respectively,
consistent with Fig. 5b.

Off-State Performance
So far, the discussion had only been concerned with the
on-state performance of an array of 1D wires in com-
parison with their 2D counterpart. In this section, we
will discuss that the abovementioned benefits of a higher
on-current in 1D for certain parameters do in fact not
come at the expense of a deteriorated off-state perform-
ance of the device. In order to come to this conclusion,
currents through both, the conduction and valence band
need to be considered. If a band gap is assumed in a
semiconductor with parabolic bands (see also Fig. 6), size
quantization increases the energetic spacing between the
maximum of the valence band and the minimum of the
conduction band for the 1D case. To quantify the impact
of this band gap change, the above condition about zero
Kelvin operation needs to be revised since, otherwise, an
infinitely steep inverse subthreshold slope and, accord-
ingly, an infinite on/off-current ratio would make the
comparison between the 2D and 1D scenario meaningless.
Figure 7 shows transfer characteristics for both, the 1D
and the 2D case at 300 K. As apparent from the plot, the
quantization conditions in the nanowires result in a larger
band gap that leads to a larger on/off-current ratio, i.e., in
particular, a substantially lower minimum current level as
shown in Fig. 7.

Conclusions
In conclusion, we have presented in this article a simple
analysis focusing on both the on-current in arrays of one-

dimensional wires if compared to a two-dimensional struc-
ture of similar dimensions. Different from general expecta-
tions, an array of 1D structures can outperform the current
in a 2D system if threshold voltages are properly adjusted,
even under room temperature operation. The above discus-
sion provides a simple guide to perform similar compari-
sons for other material systems and device structures.
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