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Abstract The cumulative residual entropy (CRE) is a new measure of information
and an alternative to the Shannon differential entropy in which the density func-
tion is replaced by the survival function. This new measure overcomes deficiencies
of the differential entropy while extending the Shannon entropy from the discrete
random variable cases to the continuous counterpart. Some properties of the cumu-
lative residual entropy, its estimation and applications has been studied by many
researchers. The objective of this paper is twofold. In the first part, we give a cen-
tral limit theorem result for the empirical cumulative residual entropy based on a right
censored random sample from an unknown distribution. In the second part, we use
the CRE of the comparison distribution function to propose a goodness-of-fit test for
the exponential distribution. The performance of the test statistic is evaluated using
a simulation study. Finally, some numerical examples illustrating the theory are also
given.

Keywords Censored data · Comparison distribution function · Cumulative entropy

1 Introduction

Fromaprobabilistic point of view, to study a stochastic phenomenon,we try tomeasure
how much chance a spatial outcome of the phenomena has in order for it to occur.
A different viewpoint is adopted from an information theoretic point of view, which
tries to answer how much we are able to predict the outcome of the phenomenon. In
other words, we try to measure the amount of uncertainty or entropy contained in the
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outcome. Shannon (1948) was able to formulate the measurement of this uncertainty
contained in a single event. The uncertainty contained in a discrete random variable
is then considered as the weighted average of the uncertainty of each single event.
Formally, for a discrete random variable X with probability mass function p(x) =
P(X = x), the Shannon entropy is defined as

H(X) = −
∑

x

p(x) log p(x). (1)

Note that H(X) = −E[log p(X)] and an immediate extension leads us to its
continuous analog called the differential entropy. That is, for a non-negative continuous
random variable with density function f (x) the differential entropy, which we denote
by Hc(X), is defined as

Hc(X) = −E[log f (X)] = −
∞∫

0

f (x) log f (x)dx . (2)

Nevertheless, it is well-known (cf. Di Crescenzo and Longobardi (2009) and refer-
ences therein) that this extension does not preserve some basic properties of an infor-
mation measure; for instance, the differential entropy can take on negative values.
Recently, among various attempts to define possible alternative information theoretic
measures, Rao et al. (2004) proposed the cumulative residual entropy (CRE) and stud-
ied its properties. This measure replaces density function by the survival function. For
a non-negative random variable X with distribution function F and survival function
F̄ = 1 − F , the CRE is defined as follows:

E(X) = −
∞∫

0

F̄(x) log F̄(x)dx . (3)

Properties of the CRE can be found in Rao (2005), Di Crescenzo and Longobardi
(2009), andNavarro et al. (2010).DiCrescenzo andLongobardi (2009) also introduced
and studied the Cumulative Entropy, denoted by CE(X), as an analog to CRE by using
distribution function in (3) instead of survival function. That is,

CE(X) = −
∞∫

0

F(x) log F(x)dx .

Asadi and Zohrevand (2007) considered the corresponding dynamic properties of the
CRE corresponding to the residual lifetime variable. Applications of CRE to image
alignment and measurements of similarity between images can also be found in Wang
and Vemuri (2007) and references therein.

Due to the extensive applications of various information criteria in studying
biological and engineering systems, it is incumbent on practitioners to estimate
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On empirical cumulative residual entropy 679

CRE when no prior information are available on the underlying distribution of X .
Rao et al. (2004) consider empirical CRE as a plug-in estimator of CRE through
replacing survival function by the empirical survival function and show that it is
a strongly consistent estimator for CRE. Similarly, Di Crescenzo and Longobardi
(2009) use the empirical cumulative entropy to estimate the cumulative entropy.
They are also able to prove the strong consistency of the empirical cumulative
entropy and provided a central limit theorem based on a random sample from an
exponential distribution. It is also worthy to mention that similar results have been
obtained for other information measures. For instance, Abraham and Sankaran (2006)
introduced and studied Renyi’s information measure for residual lifetime distribu-
tions. Maya et al. (2013) proposed several nonparametric estimators for the Renyi’s
information measure for the residual lifetime distribution based on complete and
censored data and established their asymptotic properties under suitable regularity
conditions.

Let X1, . . . , Xn be independent positive random variables with continuous distri-
bution function F(t), survival Function F̄(t) = 1 − F(t), and cumulative hazard
function �(t) = − log F̄(t). Assume that Xi s are censored on the right by indepen-
dent and identically distributed positive random variables Ti (with survival function
C̄(x)) which are also independent of Xi . Define Zi = min{Xi , Ti } and δi = 1 or 0
according as to whether Xi ≤ Ti or Xi > Ti respectively. Then the available data are
{(Z1, δ1), . . . , (Zn, δn)}. A well-known estimate of F̄ is the Kaplan-Meier estimator,
ˆ̄F (Kaplan and Meier,1958) which is given by

ˆ̄F(t) =
∏

i :zi≤t

(
1 − δi

n − i + 1

)
. (4)

In this paper, we replace F̄ and�with their corresponding Kaplan-Meier and Nelson-
Aalen estimators, respectively. Observe that E(X) can also be written as

E(X) =
τ∫

0

F̄(x)�(x)dx, (5)

where τ = sup{x : F̄(x) > 0}, and due to this, we propose the following estimator of
the CRE:

E( ˆ̄F) =
τ∫

0

ˆ̄F(x)�̂(x)dx . (6)

In this paper, we will prove that this estimator is a consistent estimator and its asymp-
totic distribution is normal.

Testing for exponentiality has involved a great deal of current statistical research
recently, and is of some importance in statistical inference. The tests are usually con-
structed by using the characterization results from reliability theory and also by using
different information measures such as similarity or discrimination measures for com-
paring between distribution functions(cf. Baringhaus and Henze 2000; Baratpour and
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680 V. Zardasht et al.

Habibi Rad 2012, and references therein). Let X and Y be non-negative random vari-
ables with distribution functions F andG, respectively. To compare between X and Y ,
the comparison distribution function (Parzen 1998) is defined as D(u) = F(G−1(u)),
for 0 ≤ u ≤ 1 (note that if G = F , then D(u) will be the cumulative distribution
function of the uniform distribution). Our test statistic is motivated by considering the
CRE for the comparison distribution function, that is

C(X,Y ) = −
∞∫

0

F̄(x) log F̄(x)dG(x). (7)

IfY is a non-negative randomvariablewith distribution functionG and X is distributed
as exponential distribution with mean λ, then

C(exp,Y ) =
∞∫

0

x

λ
e− x

λ dG(x), (8)

will compare distribution function G with the exponential distribution. If Y is distrib-
uted as exponential distribution, then C(exp,Y ) = 1

4 , which is indeed, the value of
CRE for a standard uniform random variable. Viewing the difference C(exp,Y ) − 1

4
as a measure of the deviation of the distribution of Y from the exponential distribution,
we give another goodness-of-fit test for the exponential distribution.

The rest of the paper is organized as follows. In Sect. 2 we give the large sample
properties of the empirical CRE. In Sect. 3 we apply the comparison CRE to construct
a goodness-of-fit test for the exponential distribution. Section 4 is devoted to the
simulation results and a couple of numerical examples and finally, some concluding
remarks are given in Sect. 5.

2 Asymptotic properties of E( ˆ̄F)

In this section, we investigate the consistency and asymptotic normality of E( ˆ̄F).
We first recall some notations from standard counting process methods. Let N (t) =∑n

i=1 I (Zi ≤ t, δi = 1) be the number of failures or deaths up to time t i.e, the
number of uncensored samples, and Y (t) = ∑n

i=1 I (Zi ≥ t) be the number of at risk
process. TheNelson-Aalen estimator of the cumulative hazard function is given by (cf.
Kalbfleisch and Prentice 2002, p. 168) �̂(t) = ∫ t

0 dN (u)/Y (u), where the reciprocal
of Y (u) is defined to be 0 whenever Y (u) is 0. It is also well-known that the process
M(t) = N (t) − ∫ t

0 Y (u)d�(u) is a square integrable martingale with respect to the
natural filtration.

Theorem 2.1 Let y(t) = F̄(t)C̄(t). Then, as n → ∞,

(i) E( ˆ̄F)
p−→ E(X),
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On empirical cumulative residual entropy 681

(ii)
√
n(E( ˆ̄F) − E(X)) converges in distribution to a Gaussian random variable Z

with mean zero and variance

σ 2 =
τ∫

0

τ∫

0

F̄(t)F̄(u)v(t ∧ u)dtdu, (9)

where,

v(t) =
t∫

0

d�(u)

y(u)
,

and
p−→ represents convergence in probability.

Proof First, one can easily show by using the Glivenko-Cantelli Theorem that

sup
0≤t≤τ

|Y (t)/n − y(t)| p−→ 0.

This and the Rebolledo’s Theorem (see Kalbfleisch and Prentice 2002, pp. 166–168)
imply that

√
n(�̂(t)−�(t)) converges to a Gaussian random variable with mean zero

and variance v(t). The result now follows from Theorem 3.1 in Sengupta et al. (1998),

as its one dimensional case, by replacing K (t) and X (t) by ˆ̄F(t), the Kaplan-Meier
estimator of F̄ , and

√
n(�̂(t) − �(t)), respectively.

By the standard counting process method, an estimator of σ 2 can be given by

σ̂ 2 =
τ∫

0

τ∫

0

ˆ̄F(t) ˆ̄F(u)V (t ∧ u)dtdu, (10)

where,

V (t) =
t∫

0

dN (u)

Y 2(u)
,

and t ∧ u stands for min{t, u}. �	
Remark 2.2 In the censored sample case, an analogue estimator of the cumulative
entropy can also be given by

CE( ˆ̄F) = −
τ∫

0

(1 − ˆ̄F(x)) log
(
1 − ˆ̄F(x)

)
dx . (11)
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682 V. Zardasht et al.

By applying the same method, one can easily conclude that, as n → ∞, CE( ˆ̄F)

converges in probability to CE(X). Furthermore,
√
n(CE( ˆ̄F) − CE(X)) converges in

distribution to a zero mean Gaussian random variable with variance estimated by

σ̂ 2 =
τ∫

0

τ∫

0

log
(
1 − ˆ̄F(t)

)
log(1 − ˆ̄F(u))V ∗(t ∧ u)dtdu, (12)

where,

V ∗(t) = ˆ̄F2(t)

t∫

0

dN (u)

Y (u)[Y (u) − �N (u)] ,

and �N (t) = N (t) − N (t−). This is an extension for the result by Di Crescenzo and
Longobardi (2009) in which they provide a central limit theorem for the empirical
cumulative entropy based on random samples from the exponential distribution.

3 A goodness-of-fit test for the exponential distribution

Let X1, X2, . . . , Xn be a random sample from the population of a non-negative random
variable X with continuous distribution function F . In this section, we apply the
measure (8) to construct a test statistic for testing the hypothesis H0 : F(x) = 1−e−x/λ

versus the alternative Ha : F(x) �= 1−e−x/λ. Under the null hypothesis C(exp, X) =
1
4 (which is indeed, the value of CRE for a standard uniform random variable), then
large or small value of the difference C(exp, X) − 1

4 will lead us to reject the null
hypothesis in favor of the alternative Ha . Using the standard U-statistic theory (cf.
Lee 1990), we propose the following statistic Cn , an estimator of C(exp, X), as our
test statistic:

Cn = 1

n

n∑

i=1

Xi

X̄
e− Xi

X̄ , (13)

where X̄ = 1
n

∑n
i=1 Xi . The following theorem gives the asymptotic distribution of

the test statistic.

Theorem 3.1 Under the null hypothesis H0, as n → ∞

√
n

(
Cn − 1

4

)
d−→ N

(
0,

5

382

)
,

where,
d−→ denotes convergence in distribution and N (0, 5

382 ) stands for the normal

random variable with mean zero and variance 5
382 .
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On empirical cumulative residual entropy 683

Proof First, the central limit theorem gives that
√
n(X̄ − λ)

d−→ N (0, λ2) which
implies that

√
n(X̄ − λ) = Op(1). On the other hand, from the standard U-statistic

theory (cf. Lehmann 1999, p. 369), under the null hypothesis we have

√
n

(
Un(λ) − 1

4

)
d−→ N

(
0,

5

382

)
,

where Un(λ) = 1
n

∑n
i=1

Xi
λ
e− Xi

λ . Now the result immediately follows from Theorem
2.13 in Randles (1982). �	

We reject H0 in favor of Ha at the significant level α if
√

382n
5 |Cn − 1

4 | > Z1− α
2
,

where Z1− α
2
is 100(1− α

2 )- percentile of the standard normal distribution. In the next
section, we use the Monte Carlo simulation to compare the power of our test statistic
with some other statistics for fitting the exponential distribution to a random sample
data.

4 Simulation study

Recently, Baratpour and Habibi Rad (2012) provide a goodness-of-fit test statistic
based on a discrimination measure arising from a version of the Kulback-Leibler
information measure to test the hypothesis H0 versus the alternative Ha . Their test
statistic is given by

Tn =
∑n−1

i=1
n−i
n (ln n−i

n )(X(i+1) − X(i)) +
∑n

i=1 X
2
i

2
∑n

i=1 Xi
∑n

i=1 X
2
i

2
∑n

i=1 Xi

,

where X(i) is the i th ordered statistic related to the sample and H0 is rejected at
significant level α if Tn ≥ Tn,1−α , where Tn,1−α is 100(1 − α)-percentile of Tn
under H0. They also provide a Monte Carlo simulation study to compare between the
performance of Tn , the statistic introduced by Van-Soest (1969)

W 2 =
n∑

i=1

[
F0(X(i), λ̂) − 2i − 1

2n

]2
+ 1

12n
,

the statistic introduced by Finkelstein and Schafer (1971)

S∗ =
n∑

i=1

max

{∣∣∣∣F0(X(i), λ̂) − i

n
|, |F0(X(i), λ̂) − i − 1

n

∣∣∣∣

}
,
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where F0(x, λ) = 1 − e− x
λ , λ̂ = X̄ = 1

n

∑n
i=1 Xi and the one introduced by Choi et

al. (2004)

K LCmn = exp(Cmn)

exp(ln X̄ + 1)
,

where Cmn = − 1
n

∑n
i=1 log

∑i+m
j=i−m (X( j)−X(i))( j−i)

n
∑i+m

j=i−m(X( j)−X̄i )
2

and X̄i = 1
2m+1

∑i+m
j=i−m X( j),

which are proposed for testing H0 against Ha . In K LCmn statistic, the window sizem
is a positive integer smaller than n

2 , X( j) = X(1), if j < 1, and X( j) = X(n), if j > n.
H0 is rejected of large values of W 2, S∗ and of small values of K LCmn . We have
undertaken a simulation exercise to investigate the performance of our test statistic
comparing it with the above statistics Tn,W 2, S∗, and K LCmn . In our simulation, we
considered the following distribution functions and the empirical powers of the test
statistics were compared for each of the distributions.

(i) a Weibull distribution with density function

f (x; , λ, β) = β

λβ
xβ−1 exp

{
−

( x
λ

)β
}

, β > 0, λ > 0, x > 0,

(ii) a gamma distribution with density function

f (x; , λ, β) =
xβ−1 exp

{
− x

λ

}


(β)λβ
, β > 0, λ > 0, x > 0,

(iii) a lognormal distribution with density function

f (x;μ, σ 2) = 1

xσ
√
2π

exp

{
− 1

2σ 2 (ln x − μ)2
}

,

−∞ < μ < ∞, σ > 0, x > 0,

(iv) an inverse Gaussian distribution with density function

f (x;μ, λ) =
√

λ

2πx3
exp

{
−λ(x − μ)2

2μ2x

}
, μ > 0, λ > 0, x > 0.

As in Baratpour and Habibi Rad (2012), for each case we set the parameters such

that
E(X2

1)

2E(X1)
= 1, That is, λ = 2
(1+ 1

β
)


(1+ 2
β
)
for the Weibull distribution, λ = 2

1+β
for the

gamma distribution, σ 2 = 2
3 (ln 2 − μ) for the lognormal distribution and λ = μ2

2−μ
for the inverse Gaussian distribution. The empirical power was computed for each
statistic under a total of 100, 000 generated samples of sizes n = 5, 10, 15, 20, 25. The
power was taken as the fractional number of times, out of 100, 000, the corresponding
statistic exceeded the relevant threshold. Tables 1, 2, 3 and 4 summarize the results
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Table 1 Power comparison between the tests Cn , Tn , W 2, S∗ and K LCmn , at the significance level
α = 0.05, when the alternative distribution is Weibull

n β Cn Tn W 2 S∗ K LCmn

5 1 0.04224 0.05019 0.04969 0.04883 0.04988

2 0.23628 0.34555 0.29159 0.29868 0.36816

3 0.57310 0.70709 0.64287 0.65862 0.73240

4 0.81875 0.91062 0.86633 0.88015 0.91904

10 1 0.04299 0.05148 0.05025 0.04977 0.05130

2 0.61451 0.65573 0.60997 0.62598 0.75572

3 0.96963 0.97992 0.96771 0.97515 0.99297

4 0.99904 0.99966 0.99911 0.99938 0.99996

15 1 0.04512 0.05024 0.05025 0.05024 0.05054

2 0.84462 0.82598 0.82438 0.84206 0.92164

3 0.99878 0.99913 0.99845 0.99908 0.99986

4 1.00000 1.00000 1.00000 1.00000 1.00000

20 1 0.04476 0.05063 0.05303 0.05200 0.05245

2 0.94289 0.91759 0.93264 0.94039 0.97907

3 0.99996 0.99994 0.99995 0.99995 1.00000

4 1.00000 1.00000 1.00000 1.00000 1.00000

25 1 0.04614 0.05184 0.04845 0.05024 0.05098

2 0.98272 0.96440 0.97593 0.98078 0.99408

3 1.00000 1.00000 1.00000 1.00000 1.00000

4 1.00000 1.00000 1.00000 1.00000 1.00000

of the simulation for each example. One can see from the tables that the power of all
tests against any alternative show an increasing pattern with respect to sample size.
This reveals the consistency of the tests. In general, there is no big difference between
the power of the test statistics Cn and other tests, but it has the added advantages of
having simple form and a known asymptotic distribution.

4.1 Data Analysis

In this section, we give a couple of numerical examples based on real life data set to
illustrate the use of the test statistic Cn for validating the goodness of an exponential
distribution fitting to a real data set.

Example 4.1 Proschan (1963) gave date on time, in hours of operation, between suc-
cessive failures of air-conditioning equipment in 13 aircraft to study their aging prop-
erties. The data for plane number 3 are as follows:

90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26,

44, 23, 62, 130, 208, 70, 101, 208.
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Table 2 Power comparison between the tests Cn , Tn , W 2, S∗ and K LCmn , at the significance level
α = 0.05, when the alternative distribution is Gamma

n β Cn Tn W 2 S∗ K LCmn

5 1 0.04191 0.05012 0.05006 0.04940 0.04933

5 0.40790 0.51620 0.48736 0.48864 0.56962

6 0.50300 0.60581 0.58484 0.58413 0.66622

7 0.58781 0.68259 0.66763 0.66545 0.74434

10 1 0.04359 0.04901 0.04989 0.05058 0.04968

5 0.91530 0.83344 0.89267 0.89011 0.94032

6 0.96863 0.90964 0.95473 0.95258 0.97765

7 0.98961 0.95350 0.98275 0.98025 0.99189

15 1 0.04323 0.05104 0.05156 0.05002 0.05041

5 0.99399 0.94619 0.98833 0.98622 0.99293

6 0.99935 0.98234 0.99834 0.99774 0.99857

7 0.99986 0.99393 0.99957 0.99949 0.99968

20 1 0.04241 0.05125 0.04915 0.04845 0.05056

5 0.99968 0.98361 0.99891 0.99870 0.99865

6 0.99999 0.99655 0.99998 0.99993 0.99982

7 1.00000 0.99946 1.00000 1.00000 0.99998

25 1 0.04616 0.05006 0.05045 0.05118 0.04967

5 0.99998 0.99546 0.99995 0.99992 0.99972

6 1.00000 0.99944 1.00000 1.00000 0.99998

7 1.00000 0.99995 1.00000 1.00000 1.00000

Applying the test statistic Cn gives C29 = 0.269, and the standard normal distribution

approximation to
√

(29)(382)
5 (C29 − 0.25) gives a P-value of 0.379. Thus, the test does

not reject the null hypothesis that the failure times follow an exponential distribution at
significance level α = 0.05. Using three other test statistics, Lawless (1982) obtained
the same result for the above failure data.

Example 4.2 The following data are from Lawless (1982) and it consists of failure
times for 36 appliances subjected to an automatic life test.

111, 351, 491, 1701, 3291, 3811, 7081, 9581, 10621, 11671, 15941, 19251,

19901, 22231, 23271, 24001, 24511, 24711, 25511, 25651, 25681, 26941, 27021,

27611, 28311, 30341, 30591, 31121, 32141, 34781, 35041, 43291, 63671, 69761,

78461, 13403.

For these data, we obtain C36 = 0.28 and the normal approximation gives a P-value
of 0.115. Thus, the test accepts the null hypothesis at significance level α = 0.05.
That is, the test does not indicate any evidence against the exponential model for the
failure times.
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Table 3 Power comparison between the tests Cn , Tn , W 2, S∗ and K LCmn , at the significance level
α = 0.05, when the alternative distribution is Lognormal

n μ Cn Tn W 2 S∗ K LCmn

5 0.4 0.43924 0.52026 0.52316 0.51504 0.60221

0.5 0.65915 0.71358 0.73654 0.72025 0.80221

0.6 0.94782 0.94778 0.96987 0.95878 0.98282

10 0.4 0.93266 0.79615 0.92483 0.90023 0.93280

0.5 0.99586 0.94968 0.99498 0.98956 0.99318

0.6 1.00000 0.99967 1.00000 0.99999 1.00000

15 0.4 0.99591 0.90456 0.99393 0.98985 0.98512

0.5 1.00000 0.99045 0.99999 0.99989 0.99935

0.6 1.00000 0.99999 1.00000 1.00000 1.00000

20 0.4 0.99989 0.95570 0.99966 0.99915 0.99317

0.5 1.00000 0.99831 1.00000 1.00000 0.99987

0.6 1.00000 1.00000 1.00000 1.00000 1.00000

25 0.4 1 0.97908 0.99999 0.99996 0.99696

0.5 1 0.99972 1.00000 1.00000 0.99996

0.6 1 1.00000 1.00000 1.00000 1.00000

Table 4 Power comparison between the tests Cn , Tn , W 2, S∗ and K LCmn , at the significance level
α = 0.05, when the alternative distribution is Inverse Guassian

n μ Cn Tn W 2 S∗ K LCmn

5 0.1 0.37544 0.01270 0.36479 0.36068 0.03382

0.2 0.27751 0.01565 0.27316 0.26882 0.02269

0.3 0.20014 0.01995 0.20386 0.19872 0.02279

10 0.1 0.64859 0.38345 0.69273 0.68652 0.00660

0.2 0.50078 0.25832 0.56465 0.55579 0.00445

0.3 0.35766 0.17202 0.43788 0.42856 0.00702

15 0.1 0.80302 0.66484 0.85406 0.85299 0.01217

0.2 0.66068 0.51416 0.74788 0.74583 0.00189

0.3 0.48970 0.37546 0.61101 0.60813 0.00255

20 0.1 0.89120 0.82312 0.93295 0.93162 0.00184

0.2 0.77133 0.68531 0.85553 0.85153 0.00039

0.3 0.60069 0.54071 0.73889 0.73376 0.00111

25 0.1 0.94230 0.90814 0.96927 0.96874 0.00299

0.2 0.85083 0.80146 0.91982 0.91854 0.00014

0.3 0.69402 0.66931 0.82468 0.82200 0.00042

5 Conclusion

In this paper, we have considered the asymptotic behaviour of the empirical cumu-
lative residual entropy. We were able to show that the empirical CRE converges in
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distribution to a normal random variable. It was also shown that the same result holds
for the empirical cumulative entropy which extends the result by Di Crescenzo and
Longobardi (2009). We used the CRE entropy of the comparison distribution function
to propose a new goodness-of-fit test for an exponential distribution. An extensive
simulation exercise was undertaken to compare between the performance of this test
statistic and four other test statistics and the results revealed the consistency and high
power of the proposed test statistic. Finally, using a couple of numerical examples,
the use of the test statistic for testing goodness-of-fit for exponential distribution was
illustrated.
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