13 research outputs found

    AXL targeting reduces fibrosis development in experimental unilateral ureteral obstruction

    Get PDF
    The AXL receptor tyrosine kinase (RTK) is involved in partial epithelial-to-mesenchymal transition (EMT) and inflammation - both main promoters of renal fibrosis development. The study aim was to investigate the role of AXL inhibition in kidney fibrosis due to unilateral ureteral obstruction (UUO). Eight weeks old male C57BL/6 mice underwent UUO and were treated with oral AXL inhibitor bemcentinib (n = 22), Angiotensin-converting enzyme inhibitor (ACEI, n = 10), ACEI and bemcentinib (n = 10) or vehicle alone (n = 22). Mice were sacrificed after 7 or 15 days and kidney tissues were analyzed by immunohistochemistry (IHC), western blot, ELISA, Sirius Red (SR) staining, and hydroxyproline (Hyp) quantification. RNA was extracted from frozen kidney tissues and sequenced on an Illumina HiSeq4000 platform. After 15 days the ligated bemcentinib-treated kidneys showed less fibrosis compared to the ligated vehicle-treated kidneys in SR analyses and Hyp quantification. Reduced IHC staining for Vimentin (VIM) and alpha smooth muscle actin (alpha SMA), as well as reduced mRNA abundance of key regulators of fibrosis such as transforming growth factor (Tgf beta), matrix metalloproteinase 2 (Mmp2), Smad2, Smad4, myofibroblast activation (Aldh1a2, Crlf1), and EMT (Snai1,2, Twist), in ligated bemcentinib-treated kidneys was compatible with reduced (partial) EMT induction. Furthermore, less F4/80 positive cells, less activity of pathways related to the immune system and lower abundance of MCP1, MCP3, MCP5, and TARC in ligated bemcentinib-treated kidneys was compatible with reduction in inflammatory infiltrates by bemcentinib treatment. The AXL RTK pathway represents a promising target for pharmacologic therapy of kidney fibrosis.Peer reviewe

    Gesetzliche Einführung des Neugeborenen-Hörscreenings in die "Kinder-Richtlinien" im Januar 2009 - Ergebnisse und Erfahrungen aus dem HELIOS Klinikum Berlin-Buch

    Get PDF
    Progressive kidney diseases and renal fibrosis are associated with endothelial injury and capillary rarefaction. However, our understanding of these processes has been hampered by the lack of tools enabling the quantitative and noninvasive monitoring of vessel functionality. Here, we used micro-computed tomography (µCT) for anatomical and functional imaging of vascular alterations in three murine models with distinct mechanisms of progressive kidney injury: ischemia-reperfusion (I/R, days 1–56), unilateral ureteral obstruction (UUO, days 1–10), and Alport mice (6–8 weeks old). Contrast-enhanced in vivo µCT enabled robust, noninvasive, and longitudinal monitoring of vessel functionality and revealed a progressive decline of the renal relative blood volume in all models. This reduction ranged from −20% in early disease stages to −61% in late disease stages and preceded fibrosis. Upon Microfil perfusion, high-resolution ex vivo µCT allowed quantitative analyses of three-dimensional vascular networks in all three models. These analyses revealed significant and previously unrecognized alterations of preglomerular arteries: a reduction in vessel diameter, a prominent reduction in vessel branching, and increased vessel tortuosity. In summary, using µCT methodology, we revealed insights into macro-to-microvascular alterations in progressive renal disease and provide a platform that may serve as the basis to evaluate vascular therapeutics in renal disease

    A collagen-binding protein enables molecular imaging of kidney fibrosis in vivo

    Get PDF
    Pathological deposition of collagen is a hallmark of kidney fibrosis. To illustrate this process we employed multimodal optical imaging to visualize and quantify collagen deposition in murine models of kidney fibrosis (ischemia-reperfusion or unilateral ureteral obstruction) using the collagen-binding adhesion protein CNA35. For in vivo imaging, we used hybrid computed tomography-fluorescence molecular tomography and CNA35 labeled with the near-infrared fluorophore Cy7. Upon intravenous injection, CNA35-Cy7 accumulation was significantly higher in fibrotic compared to non-fibrotic kidneys. This difference was not detected for a non-specific scrambled version of CNA35-Cy7. Ex vivo, on kidney sections of mice and patients with renal fibrosis, CNA35-FITC co-localized with fibrotic collagen type I and III, but not with the basement membrane collagen type IV. Following intravenous injection, CNA35-FITC bound to both interstitial and perivascular fibrotic areas. In line with this perivascular accumulation, we observed significant perivascular fibrosis in the mouse models and in biopsy sections from patients with chronic kidney disease using computer-based morphometry quantification. Thus, molecular imaging of collagen using CNA35 enabled specific non-invasive quantification of kidney fibrosis. Collagen imaging revealed significant perivascular fibrosis as a consistent component next to the more commonly assessed interstitial fibrosis. Our results lay the basis for further probe and protocol optimization towards the clinical translation of molecular imaging of kidney fibrosis

    Operationen am Ziliarkörper

    Get PDF
    We have identified platelet-derived growth factor (PDGF)-CC as a potent profibrotic mediator in kidney fibrosis and pro-angiogenic mediator in glomeruli. Because renal fibrosis is associated with progressive capillary rarefaction, we asked whether PDGF-CC neutralization in fibrosis might have detrimental anti-angiogenic effects leading to aggravated peritubular capillary loss. We analyzed capillary rarefaction in mice with and without PDGF-CC neutralization (using genetically deficient mice and neutralizing antibodies), in three different models of renal interstitial fibrosis, unilateral ureteral obstruction, unilateral ischemia-reperfusion, Col4a3-deficient (Alport) mice, and healthy animals. Independent of the effect of PDGF-CC neutralization on renal fibrosis, we found no difference in capillary rarefaction between PDGF-CC–neutralized mice and mice with intact PDGF-CC. We also found no differences in microvascular leakage (determined by extravasation of Evans Blue Dye) and in renal relative blood volume quantified using in vivo microcomputed tomography. PDGF-CC neutralization had no effects on renal microvasculature in healthy animals. Capillary endothelium did not express PDGF receptor-α, suggesting that potential PDGF-CC effects would have to be indirect. PDGF-CC neutralization or deficiency was not associated with preservation or accelerated loss of peritubular capillaries, suggesting no significant pro-angiogenic effects of PDGF-CC during renal fibrosis. From a clinical perspective, the profibrotic effects of PDGF-CC outweigh the pro-angiogenic effects and, thus, do not limit a potential therapeutic use of PDGF-CC inhibition in renal fibrosis
    corecore