3,249 research outputs found

    The global electroweak fit at NNLO and prospects for the LHC and ILC

    Get PDF
    For a long time, global fits of the electroweak sector of the Standard Model (SM) have been used to exploit measurements of electroweak precision observables at lepton colliders (LEP, SLC), together with measurements at hadron colliders (Tevatron, LHC), and accurate theoretical predictions at multi-loop level, to constrain free parameters of the SM, such as the Higgs and top masses. Today, all fundamental SM parameters entering these fits are experimentally determined, including information on the Higgs couplings, and the global fits are used as powerful tools to assess the validity of the theory and to constrain scenarios for new physics. Future measurements at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) promise to improve the experimental precision of key observables used in the fits. This paper presents updated electroweak fit results using newest NNLO theoretical predictions, and prospects for the LHC and ILC. The impact of experimental and theoretical uncertainties is analysed in detail. We compare constraints from the electroweak fit on the Higgs couplings with direct LHC measurements, and examine present and future prospects of these constraints using a model with modified couplings of the Higgs boson to fermions and bosons.Comment: 26 pages, 9 figure

    Monitoring of the fatigue state of single-lip deep-drilled specimens made of the quenched and tempered steel AISI 4140 using micromagnetic methods

    Get PDF
    Fatigue is one of the main causes for the failure of technical components. Therefore, the monitoring of fatigue-related material degradation is a target-oriented way to extend the lifetime of safety-relevant components. In terms of sustainability and resource conservation, the implementation of reliable fatigue monitoring is of crucial importance. Fatigue damage is manifested by a variety of microstructural and micromechanical property changes such as grain refinement, relaxation of residual stresses, increase of dislocation density and hardness change. An application of micromagnetic techniques is very promising, since it is known that Barkhausen noise analysis and eddy current testing are sensitive to these parameters. This work deals with the separation of the micromagnetic parameters with respect to fatigue-induced changes. This separation is necessary to identify, quantify and evaluate the relevant fatigue damage mechanisms and thereby assess the remaining lifetime of the monitored components. In this work, multiple amplitude fatigue tests were performed on specimens drilled under different conditions and as a consequence partly feature a white etching layer. Under these aspects the capability of Barkhausen noise analysis and eddy current testing was compared and assessed

    HistFitter software framework for statistical data analysis

    Get PDF
    We present a software framework for statistical data analysis, called HistFitter, that has been used extensively by the ATLAS Collaboration to analyze big datasets originating from proton-proton collisions at the Large Hadron Collider at CERN. Since 2012 HistFitter has been the standard statistical tool in searches for supersymmetric particles performed by ATLAS. HistFitter is a programmable and flexible framework to build, book-keep, fit, interpret and present results of data models of nearly arbitrary complexity. Starting from an object-oriented configuration, defined by users, the framework builds probability density functions that are automatically fitted to data and interpreted with statistical tests. A key innovation of HistFitter is its design, which is rooted in core analysis strategies of particle physics. The concepts of control, signal and validation regions are woven into its very fabric. These are progressively treated with statistically rigorous built-in methods. Being capable of working with multiple data models at once, HistFitter introduces an additional level of abstraction that allows for easy bookkeeping, manipulation and testing of large collections of signal hypotheses. Finally, HistFitter provides a collection of tools to present results with publication-quality style through a simple command-line interface.Comment: 35 pages (excluding appendix) and 10 figures. Code publicly available at: http://cern.ch/histfitte

    Approximate Homomorphisms of Ternary Semigroups

    Full text link
    A mapping f:(G1,[]1)(G2,[]2)f:(G_1,[ ]_1)\to (G_2,[ ]_2) between ternary semigroups will be called a ternary homomorphism if f([xyz]1)=[f(x)f(y)f(z)]2f([xyz]_1)=[f(x)f(y)f(z)]_2. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of mappings of commutative semigroups into Banach spaces. In addition, we establish the superstability of ternary homomorphisms into Banach algebras endowed with multiplicative norms.Comment: 10 page

    Changes in subcellular doxorubicin distribution and cellular accumulation alone can largely account for doxorubicin resistance in SW-1573 lung cancer and MCF-7 breast cancer multidrug resistant tumour cells.

    Get PDF
    Doxorubicin accumulation defects in multidrug resistant tumour cells are generally small in comparison to the resistance factors. Therefore additional mechanisms must be operative. In this paper we show by a quantitative approach that doxorubicin resistance in several P-glycoprotein-positive non-small cell lung cancer and breast cancer multidrug resistant cell lines can be explained by a summation of accumulation defect and alterations in the efficacy of the drug once present in the cell. This alteration of efficacy was partly due to changes in intracellular drug localisation, characterised by decreased nuclear/cytoplasmic doxorubicin fluorescence ratios (N/C-ratios). N/C-ratios were 2.8-3.6 in sensitive cells, 0.1-0.4 in cells with high (> 70-fold) levels of doxorubicin resistance and 1.2 and 1.9 in cells with low or intermediate (7.5 and 24-fold, respectively) levels of doxorubicin resistance. The change of drug efficacy was reflected by an increase in the total amount of doxorubicin present in the cell at equitoxic (IC50) concentrations. N/C ratios in highly resistant P-glycoprotein-containing cells could be increased with the resistance modifier verapamil to values of 1.3-2.7, a process that was paralleled by a decrease of the cellular doxorubicin amounts present at IC50. At the low to moderate residual levels of resistance, obtained with different concentrations of verapamil, a linear relationship between IC50 and cellular doxorubicin amounts determined at IC50 was found. This shows that at this stage of residual resistance, extra reversal by verapamil should be explained by further increase of drug efficacy rather than by increase of cellular drug accumulation. A similar relationship was found for P-glycoprotein-negative MDR cells with low levels of resistance. Since in these cells N/C ratios could not be altered, verapamil-induced decrease of IC50 must be due to increased drug efficacy by action on as yet unidentified targets. Although the IC50 of sensitive human cells cannot be reached with resistance modifiers, when using these relationships it can be shown by extrapolation that cellular and nuclear doxorubicin amounts at IC50 at complete reversal of resistance were the same as in sensitive cells. It is concluded that doxorubicin resistance factors for multidrug resistant cells can for a large part, and in the case of P-glycoprotein-containing cells probably fully, be accounted for by decreased amounts of drug at nuclear targets, which in turn is characterised by two processes only: decreased cellular accumulation and a shift in the ratio nuclear drug/cytoplasmic drug

    Complete Genome Sequence of Houston Virus, a Newly Discovered Mosquito-Specific Virus Isolated from Culex quinquefasciatus in Mexico

    Get PDF
    ABSTRACT We fully sequenced the genome of Houston virus, a recently discovered mosquito-associated virus belonging to the newly established family Mesoniviridae. The isolate was recovered from Culex quinquefasciatus in southern Mexico, which shows that the geographic range of Houston virus is not restricted to the United States in North America
    corecore