Abstract

A mapping f:(G1,[]1)(G2,[]2)f:(G_1,[ ]_1)\to (G_2,[ ]_2) between ternary semigroups will be called a ternary homomorphism if f([xyz]1)=[f(x)f(y)f(z)]2f([xyz]_1)=[f(x)f(y)f(z)]_2. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of mappings of commutative semigroups into Banach spaces. In addition, we establish the superstability of ternary homomorphisms into Banach algebras endowed with multiplicative norms.Comment: 10 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019