126 research outputs found

    Generalised Cantor sets and the dimension of products

    Get PDF
    In this paper we consider the relationship between the Assouad and box-counting dimension and how both behave under the operation of taking products. We introduce the notion of ‘equi-homogeneity’ of a set, which requires a uniformity in the cardinality of local covers at all length-scales and at all points, and we show that a large class of homogeneous Moran sets have this property. We prove that the Assouad and box-counting dimensions coincide for sets that have equal upper and lower box-counting dimensions provided that the set ‘attains’ these dimensions (analogous to ‘s-sets’ when considering the Hausdorff dimension), and the set is equi-homogeneous. Using this fact we show that for any α ∈ (0, 1) and any β, γ ∈ (0, 1) such that β + γ ≥ 1 we can construct two generalised Cantor sets C and D such that dimBC = αβ, dimBD = α γ, and dimAC = dimAD = dimA (C × D) = dimB (C × D) = α

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    The universal Glivenko-Cantelli property

    Full text link
    Let F be a separable uniformly bounded family of measurable functions on a standard measurable space, and let N_{[]}(F,\epsilon,\mu) be the smallest number of \epsilon-brackets in L^1(\mu) needed to cover F. The following are equivalent: 1. F is a universal Glivenko-Cantelli class. 2. N_{[]}(F,\epsilon,\mu)0 and every probability measure \mu. 3. F is totally bounded in L^1(\mu) for every probability measure \mu. 4. F does not contain a Boolean \sigma-independent sequence. It follows that universal Glivenko-Cantelli classes are uniformity classes for general sequences of almost surely convergent random measures.Comment: 26 page

    Keck Spectra of Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Boundary in the Alpha Persei Open Cluster

    Get PDF
    We have identified twenty-seven candidate very low mass members of the relatively young Alpha Persei open cluster from a six square degree CCD imaging survey. Based on their I magnitudes and the nominal age and distance to the cluster, these objects should have masses less than 0.1 Msunif they are cluster members. We have subsequently obtained intermediate resolution spectra of seventeen of these objects using the Keck II telescope and LRIS spectrograph. We have also obtained near-IR photometry for many of the stars. Our primary goal was to determine the location of the "lithium depletion boundary" and hence to derive a precise age for the cluster. We detect lithium with equivalent widths greater than or equal to 0.4 \AA in five of the program objects. We have constructed a color-magnitude diagram for the faint end of the Alpha Persei main sequence. These data allow us to accurately determine the Alpha Persei single-star lithium depletion boundary at M(IC_C) = 11.47, M(Bol) = 11.42, (R-I)C0_{C0} = 2.12, spectral type M6.0. By reference to theoretical evolutionary models, this converts fairly directly into an age for the Alpha Persei cluster of 90 ±\pm 10 Myr. At this age, the two faintest of our spectroscopically confirmed members should be sub-stellar (i.e., brown dwarfs) according to theoretical models.Comment: Accepted Ap

    Distance sets, orthogonal projections, and passing to weak tangents

    Get PDF
    The author is supported by a Leverhulme Trust Research Fellowship (RF-2016-500).We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.PostprintPeer reviewe

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
    • …
    corecore