1,660 research outputs found
Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect
We study two perpendicular intersecting flows of pedestrians. The latter are
represented either by moving hard core particles of two types, eastbound
(\symbp) and northbound (\symbm), or by two density fields, \rhop_t(\brr)
and \rhom_t(\brr). Each flow takes place on a lattice strip of width so
that the intersection is an square. We investigate the spontaneous
formation, observed experimentally and in simulations, of a diagonal pattern of
stripes in which alternatingly one of the two particle types dominates. By a
linear stability analysis of the field equations we show how this pattern
formation comes about. We focus on the observation, reported recently, that the
striped pattern actually consists of chevrons rather than straight lines. We
demonstrate that this `chevron effect' occurs both in particle simulations with
various different update schemes and in field simulations. We quantify the
effect in terms of the chevron angle and determine its
dependency on the parameters governing the boundary conditions.Comment: 36 pages, 22 figure
Continuous and first-order jamming transition in crossing pedestrian traffic flows
After reviewing the main results obtained within a model for the intersection
of two perpendicular flows of pedestrians, we present a new finding: the
changeover of the jamming transition from continuous to first order when the
size of the intersection area increases.Comment: 14 pages, 9 figure
Exact domain wall theory for deterministic TASEP with parallel update
Domain wall theory (DWT) has proved to be a powerful tool for the analysis of
one-dimensional transport processes. A simple version of it was found very
accurate for the Totally Asymmetric Simple Exclusion Process (TASEP) with
random sequential update. However, a general implementation of DWT is still
missing in the case of updates with less fluctuations, which are often more
relevant for applications. Here we develop an exact DWT for TASEP with parallel
update and deterministic (p=1) bulk motion. Remarkably, the dynamics of this
system can be described by the motion of a domain wall not only on the
coarse-grained level but also exactly on the microscopic scale for arbitrary
system size. All properties of this TASEP, time-dependent and stationary, are
shown to follow from the solution of a bivariate master equation whose
variables are not only the position but also the velocity of the domain wall.
In the continuum limit this exactly soluble model then allows us to perform a
first principle derivation of a Fokker-Planck equation for the position of the
wall. The diffusion constant appearing in this equation differs from the one
obtained with the traditional `simple' DWT.Comment: 5 pages, 4 figure
Chaos properties and localization in Lorentz lattice gases
The thermodynamic formalism of Ruelle, Sinai, and Bowen, in which chaotic
properties of dynamical systems are expressed in terms of a free energy-type
function - called the topological pressure - is applied to a Lorentz Lattice
Gas, as typical for diffusive systems with static disorder. In the limit of
large system sizes, the mechanism and effects of localization on large clusters
of scatterers in the calculation of the topological pressure are elucidated and
supported by strong numerical evidence. Moreover it clarifies and illustrates a
previous theoretical analysis [Appert et al. J. Stat. Phys. 87,
chao-dyn/9607019] of this localization phenomenon.Comment: 32 pages, 19 Postscript figures, submitted to PR
Frozen shuffle update for an asymmetric exclusion process on a ring
We introduce a new rule of motion for a totally asymmetric exclusion process
(TASEP) representing pedestrian traffic on a lattice. Its characteristic
feature is that the positions of the pedestrians, modeled as hard-core
particles, are updated in a fixed predefined order, determined by a phase
attached to each of them. We investigate this model analytically and by Monte
Carlo simulation on a one-dimensional lattice with periodic boundary
conditions. At a critical value of the particle density a transition occurs
from a phase with `free flow' to one with `jammed flow'. We are able to
analytically predict the current-density diagram for the infinite system and to
find the scaling function that describes the finite size rounding at the
transition point.Comment: 16 page
Lattice gas with ``interaction potential''
We present an extension of a simple automaton model to incorporate non-local
interactions extending over a spatial range in lattice gases. {}From the
viewpoint of Statistical Mechanics, the lattice gas with interaction range may
serve as a prototype for non-ideal gas behavior. {}From the density
fluctuations correlation function, we obtain a quantity which is identified as
a potential of mean force. Equilibrium and transport properties are computed
theoretically and by numerical simulations to establish the validity of the
model at macroscopic scale.Comment: 12 pages LaTeX, figures available on demand ([email protected]
Chaotic properties of systems with Markov dynamics
We present a general approach for computing the dynamic partition function of
a continuous-time Markov process. The Ruelle topological pressure is identified
with the large deviation function of a physical observable. We construct for
the first time a corresponding finite Kolmogorov-Sinai entropy for these
processes. Then, as an example, the latter is computed for a symmetric
exclusion process. We further present the first exact calculation of the
topological pressure for an N-body stochastic interacting system, namely an
infinite-range Ising model endowed with spin-flip dynamics. Expressions for the
Kolmogorov-Sinai and the topological entropies follow.Comment: 4 pages, to appear in the Physical Review Letter
A Hierarchy of Heuristic-Based Models of Crowd Dynamics
We derive a hierarchy of kinetic and macroscopic models from a noisy variant
of the heuristic behavioral Individual-Based Model of Moussaid et al, PNAS
2011, where the pedestrians are supposed to have constant speeds. This IBM
supposes that the pedestrians seek the best compromise between navigation
towards their target and collisions avoidance. We first propose a kinetic model
for the probability distribution function of the pedestrians. Then, we derive
fluid models and propose three different closure relations. The first two
closures assume that the velocity distribution functions are either a Dirac
delta or a von Mises-Fisher distribution respectively. The third closure
results from a hydrodynamic limit associated to a Local Thermodynamical
Equilibrium. We develop an analogy between this equilibrium and Nash equilibia
in a game theoretic framework. In each case, we discuss the features of the
models and their suitability for practical use
- …
