275 research outputs found

    Arqueoastronomía: Stonehenge.

    Full text link
    El cromlech de Stonehenge es, sin duda, el círculo de piedra más famoso del mundo. Se encuentra situado al surde Inglaterra, en una llanura cerca de Salisbury. Esta intrigante construcción megalítica es patrimonio de la humanidad de la UNESCO desde 1986. Su nombre se ha visto asociado a religiones ancestrales, a sacrificios humanos, a rituales funerarios, a mitos druídicos, a gigantes petrificados e, incluso, a la leyenda artúrica que adjudica su construcción al mago Merlín. Pero también ha sido ampliamente estudiado bajo otro punto de vista: ¿es posible que Stonehenge fuera erigido siguiendo criterios basados en la observación astronómica persiguiendo algún objetivo? La necesidad de compaginar dos campos como la arqueología y astronomía, en principio dispares, ha sido un hándicap para obtener conclusiones. Los estudios arqueológicos deben proporcionar fechas lo más precisas posibles para que la astronomía pueda calcular los sucesos astronómicos que pudiera reflejar Stonehengeen la época en que se construyó. A su vez, los resultados astronómicos deben ser compatibles con los conocimientos asociados a ese lugar y época

    Utilización del GPS en el inventario de las infraestructuras para el alumbrado.

    Full text link
    En el Simposium del año pasado tratamos la creación de mapas de iluminación en plataformas de estacionamiento de aeronaves mediante el empleo de equipos GPS que admitieran correcciones instantáneas vía redes RTK. Estos equipos no cuentan con mapas o cartografía instalada, pero son los más precisos, aunque también los más caros, del mercado. Allí se nos consultó en distintas ocasiones sobre la posible aplicación de las técnicas de posicionamiento global con objetivos distintos del que habíamos propuesto. La inquietud básica solía centrarse en si la precisión que se puede obtener con equipos GPS incorporados a móviles o PDAs es suficiente para otras aplicaciones en alumbrado. Aparentemente, la precisión de estos navegadores “domésticos” es bastante aceptable, como todos hemos podido comprobar alguna vez yendo en coche. La idea que más se repetía era la creación de un registro que incluyera la identificación individual de luminarias y equipos eléctricos asociados de un parque de alumbrado mediante las coordenadas obtenidas por GPS, que además permitiera su inclusión en cartografías digitales tipo Google Earth o Google Maps, muy populares y de fácil acces

    Current overview of S-nitrosoglutathione (GSNO) in higher plants

    Get PDF
    S-nitrosoglutathione is a nitric oxide-derived molecule, generated by the interaction of nitric oxide (NO) with reduced glutathione (GSH) in a process called S-nitrosylation (Figure 1). The reaction appears to take place either through the formation of N2O3 or the addition of NO to a glutathionyl radical formed during this reaction (Broniowska et al., 2013). GSNO is regarded as an intracellular NO reservoir as well as a vehicle of NO throughout the cell, which enables NO biological activity to expand. GSNO is also considered to be the most abundant low-molecular-mass (LMM) S-nitrosothiol (SNO). This family includes other molecules such as S-nitrosocysteine (CySNO) and S-nitrosocysteinylglycine (GlyCySNO), which have been the subject of less study in the field of plant research. There is another group of SNOs called high-molecular mass (HMM) SNOs which are produced by NO binding to sulfhydryl (-SH) groups present in specific cysteine residues of proteins. Figure 1 shows a simple model of GSNO metabolism and its interactions with other molecules in cells where different reactions including S-nitrosylation, S-transnitrosation, and S-glutathionylation are involved (Hogg, 2002; Martínez-Ruiz and Lamas, 2007). In plants, research has focused on the importance of total SNOs in specific stress situations (Feechan et al., 2005; Chaki et al., 2011a) and on the identification of the potential protein targets of S-nitrosylation as this kind of post-translational modification can alter the function of the affected proteins (Astier et al., 2012). Initial studies in this area exogenously applied GSNO in order to identify the pool of potential protein candidates (Lindermayr et al., 2005). However, less attention has been paid to the abundance, distribution, and modulation of endogenous GSNO under natural and stress conditions. In this article, we will provide a current overview of GSNO in higher plants. [EN]Work in our laboratories is supported by ERDF-cofinanced grants from the Ministry of Science and Innovation (BIO2012-33904 and BFU2011-22779)Peer reviewe

    Texture discrimination and multi-unit recording in the rat vibrissal nerve

    Get PDF
    BACKGROUND: Rats distinguish objects differing in surface texture by actively moving their vibrissae. In this paper we characterized some aspects of texture sensing in anesthetized rats during active touch. We analyzed the multifiber discharge from a deep vibrissal nerve when the vibrissa sweeps materials (wood, metal, acrylic, sandpaper) having different textures. We polished these surfaces with sandpaper (P1000) to obtain close degrees of roughness and we induced vibrissal movement with two-branch facial nerve stimulation. We also consider the change in pressure against the vibrissa as a way to improve the tactile information acquisition. The signals were compared with a reference signal (control) – vibrissa sweeping the air – and were analyzed with the Root Mean Square (RMS) and the Power Spectrum Density (PSD). RESULTS: We extracted the information about texture discrimination hidden in the population activity of one vibrissa innervation, using the RMS values and the PSD. The pressure level 3 produced the best differentiation for RMS values and it could represent the "optimum" vibrissal pressure for texture discrimination. The frequency analysis (PSD) provided information only at low-pressure levels and showed that the differences are not related to the roughness of the materials but could be related to other texture parameters. CONCLUSION: Our results suggest that the physical properties of different materials could be transduced by the trigeminal sensory system of rats, as are shown by amplitude and frequency changes. Likewise, varying the pressure could represent a behavioral strategy that improves the information acquisition for texture discrimination

    Electrophysiological characterization of texture information slip-resistance dependent in the rat vibrissal nerve

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in tactile discrimination agree that rats are able to learn a rough-smooth discrimination task by actively touching (whisking) objects with their vibrissae. In particular, we focus on recent evidence of how neurons at different levels of the sensory pathway carry information about tactile stimuli. Here, we analyzed the multifiber afferent discharge of one vibrissal nerve during active whisking. Vibrissae movements were induced by electrical stimulation of motor branches of the facial nerve. We used sandpapers of different grain size as roughness discrimination surfaces and we also consider the change of vibrissal slip-resistance as a way to improve tactile information acquisition. The amplitude of afferent activity was analyzed according to its Root Mean Square value (RMS). The comparisons among experimental situation were quantified by using the information theory.</p> <p>Results</p> <p>We found that the change of the vibrissal slip-resistance is a way to improve the roughness discrimination of surfaces. As roughness increased, the RMS values also increased in almost all cases. In addition, we observed a better discrimination performance in the retraction phase (maximum amount of information).</p> <p>Conclusions</p> <p>The evidence of amplitude changes due to roughness surfaces and slip-resistance levels allows to speculate that texture information is slip-resistance dependent at peripheral level.</p

    Towards a new philological edition of Vincent Ferrer’s Lenten sermons (València, 1413): a specimen

    Get PDF
    L&rsquo;article presenta una nova edici&oacute; fi lol&ograve;gica, actualment en preparaci&oacute;, dels&nbsp;cinquanta-tres sermons de quaresma predicats l&rsquo;any 1413 a Val&egrave;ncia per Vicent Ferrer&nbsp;(Val&egrave;ncia, Arxiu de la Catedral, ms. 273). Despr&eacute;s d&rsquo;una breu introducci&oacute; en qu&egrave;&nbsp;s&rsquo;aborden les raons que justifi quen una nova edici&oacute; d&rsquo;aquest sermonari, s&rsquo;ofereix una&nbsp;mostra del text cr&iacute;tic, acompanyat d&rsquo;un aparat textual i de notes explicatives.This paper showcases an ongoing new philological edition of Vincent Ferrer&rsquo;s fi fty-three Lenten sermons preached in Val&egrave;ncia in 1413 (Val&egrave;ncia, Cathedral Archive, ms. 273). A short introduction that gives the rationale for a new edition of this sermonary is followed by a sample of the critical text, supplemented by a textual apparatus and explanatory notes

    Interferencias nutricionales sobre el metabolismo glucídico

    Get PDF
    Gluconeogenesis is defmed as the metabolic process by which glucose is sinthetized from non-glucidic precursors such as pyruvate, lactate, glycerol and a great number of aminoacids. In mammals, this process mainly talee place in liver and renal cortex. Tradicionally, the liver has been considered as the main responsible tissue in the maintenance in glycaemic homeostasis, whereas the renal cortex only provide glucose to the whole animal in a small and constant amount without significanta adaptive changes. Nevertheless, during the last years it has been pointed out that renal tissue is able to adapt itself to different organic conditions characterized by hepatic metabolic failure or when the exogenous availability of macronutrients changes significantly. In this review, it is summarized the adaptive mechanisms of different metabilic pathways that talee place in these tissues under the nutritional and hormonal conditions dominant in each moment.La gluconeogénesis es el proceso metabólico mediante el cual es sintetizada la glucosa a partir de precursores no glucídicos, tales como piruvato, lactato, glicerol y un gran número de aminoácidos. En mamíferos, la gluconeogénesis ocurre fundamentalmente en dos tejidos, el hígado y la corteza renal. Tradicionalmente se ha considerado al tejido hepático como el principal encargado del mantenimiento de los niveles de glucosa sanguíneos, mientras que la corteza renal sería el tejido capaz de aportar glucosa al organismo entero de una forma constante y reducida, sin cambios adaptativos aparentemente significativos. Sin embargo en los últimos años se ha puesto de manifiesto que el tejido renal es capaz de adaptarse a diferentes situaciones de incapacidad hepática varíe considerablemente. En este artículo se resume la adaptación de las diferentes rutas metabólicas que operan en cada tejido al estado nutricional y hormonal que domina en ese momento

    Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants

    Get PDF
    In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues. The study of protein tyrosine nitration during development and under biotic and adverse environmental conditions has increased in the last decade; nevertheless, there is also an endogenous nitration which seems to have regulatory functions. Moreover, the advance in proteome techniques has enabled the identification of new nitrated proteins, showing the high variability among plant organs, development stage and species. Finally, it may be important to discern between a widespread protein nitration because of greater RNS content, and the specific nitration of key targets which could affect cell-signaling processes. In view of the above point, we present a mini-review that offers an update about the endogenous protein tyrosine nitration, during plant development and under several abiotic stress conditions.This study was supported by an ERDF grant co-financed by the Ministry of Economy and Competitiveness (project BIO2015-66390-P) and Junta de Andalucía (groups BIO286 and BIO192). Research in FJC laboratory is supported by an ERDF grant co-financed by the Ministry of Economy and Competitiveness (AGL2015-65104-P).Peer reviewedPeer Reviewe

    Enriquecimiento proteico de cascara de citrus y vinaza con levadura candida utilis

    Get PDF
    El objetivo de este trabajo fue estudiar la propagación de candida utilis en un reactor de laboratorio relleno de cascara de citrus utilizando como nutriente vinaza. La cáscara de naranja fue obtenida de una empresa citrícola de la localidad de Lules, la vinaza de un ingenio azucarero de la localidad de Banda del Rio Salí, Tucumán. El microorganismo utilizado pertenece al cepario del PROIMI (Planta Piloto de Procesos Industriales Microbiológicos) CONICET. Se adaptó la cepa al medio de cultivo formado por cáscara de naranja y vinaza en solución acuosa al 50%. Las fermentaciones “batch" se llevaron a cabo a escala laboratorio y se midieron las siguientes variables físico químicas para controlar el crecimiento de la levadura: DQO (Demanda Química de Oxigeno), pH, conductividad y nitrógeno total en vinaza y nitrógeno total en cáscara de naranja. Se logró un 13% de enriquecimiento proteico en cáscara de naranja, y en la vinaza una disminución: de DQO del 43%, de pH del 4% y de conductividad del 9%. Se pudo establecer que luego de 21 h de fermentación los nutrientes del medio de cultivo, formado por cáscara de naranja y vinaza en solución acuosa al 50%, fueron agotados. Se comprobó que la levadura Candida utilis es capaz de desarrollarse en residuos agroindustriales de industrias locales, provocando enriquecimiento proteico en los mismos y al mismo tiempo disminuyendo la carga contaminante de la vinazaFil: Robinson, A. J.. Universidad Nacional de TucumánFil: Lencina, M. F.. Universidad Nacional de TucumánFil: Argañara, G.. Universidad Nacional de TucumánFil: Albarracín, P. M. . Universidad Nacional de Tucumá
    corecore