133 research outputs found

    Le développement de l'embryon zygotique chez Vitis vinifera L.

    Get PDF
    The development of the zygotic embryo of Vitis vinifera L.The embryonic development of Vitis vinifera from the zygote to the mature embryo has been studied. The planes of early cell divisions are irregular, thus leading to formation of a large globular proembryo comprising about 1500 undifferentiated cells above a bulky suspensor. Organogenesis of the embryo sta rts with initiation of the cotyledons and constitution of the radicular meristem. The intercotyledonary zone, future shoot apex, is formed by about 300 cells. In this zone, cells remain undifferentiated throughout embryogenesis; its organization begins to be completed only after germination. The radicular meristem, on the other hand, is functioning from the embryonic stage. The meristem of the embryonic radicle and the meristem of the adventitious root are identical in their ('open' type) organization

    The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    Get PDF
    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth

    Effect of Biocontrol Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere Using T-RFLP and DGGE

    Get PDF
    Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 108 to 105 CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient

    The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    Full text link

    Les conditions de developpement du parasitisme racinaire

    No full text
    National audienc

    Recherches sur la resistance des sols aux maladies . XI. Etude comparative du comportement des fusarium spp. dans un sol resistant et un sol sensible aux fusarioses vasculaires enrichis en glucose

    No full text
    National audiencePrevious results indicated that wilt suppression in the ChĂąteaurenard soil was due more to competition than to antiobiosis or hyperparasitism from soil microorganisms antagonistic to pathogens in the soil. To test this hypothesis, we studied the behaviour of Fusarium spp. in Ouroux wilt-conducive and in ChĂąteaurenard wilt suppressive soils after adding glucose at increasing concentrations (0.1, 0.5, 1 mg/g soil). Addition of glucose stimulated chlamydospore germination of 6 isolates of F. oxysporum and F. solani in both soils. The percentage of germination stimulation in response to a given glucose concentration was always greater in the conducive than in the suppressive soil (fig. 1). The theoretical colonization index was, therefore, also always greater in the conducive soil (fig. 2). Studies of the population density (table 1, 2) confirmed that saprophytic development of the Fusarium species was greater in the conducive than in the suppressive soil, both amended with glucose. The lowest concentration (0.1 mg/g soil) caused a 1.5 x increase in the total population of Fusarium spp. in the conducive soil, but it was necessary to add 10 times more glucose (1 mg/g soil) to observe the same increase of the population of Fusarium in the suppressive soil. The data are interpreted to indicate that the level of fungistasis, higher in the suppressive than in the conducive soil, is in correlation with competition for nutrients. Generally speaking, this type of mechanism seems to be related to the level of soil receptivity to Fusarium wilts.Des rĂ©sultats acquis prĂ©cĂ©demment nous ont conduits Ă  formuler l’hypothĂšse selon laquelle des phĂ©nomĂšnes de compĂ©tition, inhibant le dĂ©veloppement des Fusarium spp., joueraient un rĂŽle important dans les mĂ©canismes de rĂ©sistance des sols de ChĂąteaurenard aux fusarioses vasculaires. Afin de vĂ©rifier la validitĂ© de cette hypothĂšse, le comportement des Fusarium spp. est Ă©tudiĂ© dans un sol rĂ©sistant et dans le sol sensible d’Ouroux amendĂ©s avec du glucose aux concentrations de 0,1 - 0,5 et 1 mg/g sol. L’apport de glucose stimule la germination des chlamydospores des F. oxysporum et des F solani, aussi bien dans le sol rĂ©sistant que dans le sol sensible. Mais la stimulation, qui augmente avec les doses de glucose apportĂ©es, est plus intense dans le sol sensible que dans le sol rĂ©sistant (fig. 1). Le dĂ©veloppement des tubes germinatifs est Ă©galement plus important en terre sensible qu’en terre rĂ©sistante. Par consĂ©quent, l’indice de colonisation est, pour toutes les souches de Fusarium Ă©tudiĂ©es, toujours beaucoup plus Ă©levĂ© en terre sensible qu’en terre rĂ©sistante (fig. 2). L’analyse de la densitĂ© des populations de Fusarium spp. (tabl. 1, 2) a permis de confirmer que leur dĂ©veloppement saprophytique est plus important dans le sol sensible que dans le sol rĂ©sistant amendĂ©s avec le glucose. Alors que la dose la plus faible (0,1 mg/g) suffit Ă  induire un taux de multiplication de 1,5 dans le sol sensible, il faut apporter 10 fois plus de glucose dans le sol rĂ©sistant pour observer la mĂȘme Ă©volution des populations. Ces rĂ©sultats indiquent clairement que le niveau de fongistase, plus Ă©levĂ© en terre rĂ©sistante qu’en terre sensible, est liĂ© aux phĂ©nomĂšnes de compĂ©tition nutritive pour les sources d’énergie. On peut penser, d’une maniĂšre plus gĂ©nĂ©rale, que des mĂ©canismes du mĂȘme type conditionnent le niveau de rĂ©ceptivitĂ© des sols aux fusarioses vasculaires

    Recherches sur la resistance des sols aux maladies.X. Comparaison de la mycoflore colonisant les racines de melons cultives dans un sol resistant ou dans un sol sensible aux fusarioses vasculaires

    No full text
    Ayant dĂ©montrĂ© prĂ©cĂ©demment que la population fusarienne du sol rĂ©sistant de ChĂąteaurenard est environ 10 fois plus importante que celle du sol sensible d’Ouroux, il convenait de comparer la colonisation fongique des racines de melons cultivĂ©s dans ces 2 sols. Une hypothĂšse avancĂ©e pour expliquer la rĂ©sistance des sols de ChĂąteaurenard stipulait en effet qu’une intense colonisation du rhizoplan par des Fusarium non pathogĂšnes constituerait une barriĂšre microbiologique interdisant l’accĂšs du rhizoplan Ă  l’agent pathogĂšne. Les rĂ©sultats acquis dĂ©montrent au contraire que la colonisation fongique de la racine est parfaitement comparable dans ces 2 sols, tant du point de vue quantitatif que qualitatif. La plante exerce sur la microflore tellurique un effet sĂ©lectif qui favorise la colonisation de la racine par les Fusarium spp. et, en particulier, par l’espĂšce F oxysporum, indĂ©pendamment de l’importance des populations fusariennes des sols. La comparaison entre le niveau des populations de Fusarium spp. non pathogĂšnes dans les sols et le niveau de la colonisation racinaire indique que les propagules de Fusarium ont une plus grande probabilitĂ© d’atteindre la surface de la racine dans le sol sensible que dans le sol rĂ©sistant. L’agent pathogĂšne se comporte de la mĂȘme façon que les Fusarium non pathogĂšnes et les rĂ©sultats montrent que, pour une densitĂ© d’inoculum identique, F. o. f. sp. melonis arrive plus souvent au contact de la racine dans le sol sensible que dans le sol rĂ©sistant. Ainsi la compĂ©tition pour la conquĂȘte du rhizoplan apparaĂźt-elle plus intense dans le sol rĂ©sistant que dans le sol sensible. Mais c’est dans le sol lui-mĂȘme, Ă  proximitĂ© immĂ©diate des racines, que se dĂ©roulent les phĂ©nomĂšnes de compĂ©tition intragĂ©nĂ©rique qui limitent l’activitĂ© de l’agent pathogĂšne dans le sol rĂ©sistant.We previously demonstrated that the total population of Fusarium spp. was 10 times greater in the ChĂąteaurenard soil (suppressive to Fusarium wilts) than in the Ouroux soil (conducive to Fusarium wilts). This fact prompted the hypothesis that wilt suppression was due to greater colonization of roots by non-pathogenic Fusarium spp. in the ChĂąteaurenard than in the Ouroux soil, and that root colonization by non-pathogens acted as a microbial barrier to prevent contact between the pathogen and the root surface. The present study reveals, however, that root colonization by fungi was similar in suppressive and conducive soils, both quantitatively and qualitatively. The plant selectively favoured root colonization by Fusarium spp. and especially by Fusarium oxysporum, and colonization was unrelated to concentrations of Fusarium spp. in soil. Comparisons between the density of the non-pathogenic Fusarium spp. in the soils and their activity at the root surface showed that the probability for a Fusarium propagule to reach the root surface was greater in the conducive than in the suppressive soil. The pathogenic F. oxysporum f. sp. melonis behaved in the same way as the non-pathogenic Fusarium ; at the same inoculum density, propagules of the pathogen reached the root surface more often in the conducive than in the suppressive soil. These results indicate that competition may be more intense in the rhizosphere of plants growing in the suppressive than in the conducive soils

    Recherches sur la resistance des sols aux maladies.XII. Activite respiratoire dans un sol resistant et un sol sensible aux fusarioses vasculaires enrichis en glucose

    No full text
    Des travaux antĂ©rieurs ont permis de montrer que la germination des chlamydospores et le dĂ©veloppement saprophytique des Fusarium spp. nĂ©cessitent un apport d’énergie plus important dans le sol rĂ©sistant de ChĂąteaurenard que dans le sol sensible d’Ouroux. Ces rĂ©sultats suggĂ©rant que la compĂ©tition pour les Ă©lĂ©ments nutritifs est plus intense en terre rĂ©sistante qu’en terre sensible, nous avons Ă©tudiĂ© l’activitĂ© respiratoire de ces 2 sols en rĂ©ponse Ă  un apport de glucose, afin d’apprĂ©cier leurs niveaux de biomasse et d’activitĂ© microbienne. Les rĂ©sultats acquis montrent que, pour toutes les concentrations de glucose Ă©tudiĂ©es, le taux respiratoire initial est 2 Ă  4 fois plus Ă©levĂ© dans le sol rĂ©sistant (tabl. 1), ce qui indique que la biomasse microbienne du sol rĂ©sistant est plus importante que celle du sol sensible. L’étude cinĂ©tique du dĂ©gagement de Co2 aprĂšs apport de glucose Ă  la concentration de 1 mg/g (fig. 2) montre que les microorganismes se multiplient plus rapidement et plus intensĂ©ment dans le sol rĂ©sistant au cours des 12 premiĂšres heures qui suivent l’apport d’élĂ©ment nutritif. Mais au-delĂ , le taux respiratoire diminue brusquement et se stabilise Ă  un niveau extrĂȘmement faible indiquant l’arrĂȘt de la croissance microbienne. Au contraire, en terre sensible, le taux respiratoire augmente plus lentement, mais demeure Ă  un niveau Ă©levĂ© pendant au moins 60 h, ce qui prouve que l’état nutritionnel du sol continue de permettre le dĂ©veloppement des microorganismes. Ces rĂ©sultats dĂ©montrent que, dans le sol rĂ©sistant, les chlamydospores de Fusarium disposent d’un laps de temps trĂšs limitĂ© pour germer et se dĂ©velopper en direction de la racine. Ainsi, un niveau de biomasse Ă©levĂ© dĂ©termine dans le sol rĂ©sistant une compĂ©tition nutritive particuliĂšrement intense qui limite considĂ©rablement les possibilitĂ©s de dĂ©veloppement des microorganismes et en particulier celui des Fusarium pathogĂšnes.Previous results indicated that to stimulate chlamydospore germination and saprophytic growth of Fusarium spp., it was necessary to add a greater concentration of glucose into the ChĂąteaurenard suppressive soil than into the Ouroux conducive soil. These results suggested that competition for nutrients was greater in suppressive than in conducive soil. We therefore studied the evolution of Co2 after addition of glucose to the respective soils, in order to estimate the relative amounts of biomass and microbial activity of these two soils. The initial respiration rate was 2 to 4 times higher in the suppressive than in the conducive soil (tabl. 1), indicating that the initial size of the biomass was greater in the suppressive soil. The kinetics of Co2 release after adding glucose at 1 mg/g soil (fig. 2) showed further that the microbial activity started sooner and increased faster in the suppressive than in the conducive soil. However by 12 h after addition of glucose, the respiration rate decreased quickly and stabilized at a low level, indicating that some limiting factors prevented microbial growth. In the conducive soil, on the other hand, the respiration rate increased more slowly but remained high for a long period, indicating that the nutritional status of the soil could support microbial activity for a least 60 h after addition of glucose. These results suggest that in the suppressive soil the chlamydospores of Fusarium spp. had a shorter time after addition of glucose to germinate and reach the root surface. Thus, the larger and more responsive biomass acts as a greater nutrient sink for carbon and energy needed by the chlamydospores. This more intense competition for nutrients limits the chance of development for any given microorganisms, especially for pathogenic Fusarium
    • 

    corecore