8 research outputs found

    Antimicrobial Resistance Profiles Diversity in Salmonella from Humans Cattle, 2004-2011

    Get PDF
    Analysis of long-term anti-microbial resistance (AMR) data is useful to understsource transmission dynamics of AMR. We analysed 5124 human clinical isolates from Washington State Department of Health, 391 cattle clinical isolates from the Washington Animal Disease Diagnostic Laboratory 1864 non-clinical isolates from foodborne disease research on dairies in the Pacific Northwest. Isolates were assigned profiles based on phenotypic resistance to 11 anti-microbials belonging to eight classes. Salmonella Typhimurium (ST), Salmonella Newport (SN) Salmonella Montevideo (SM) were the most common serovars in both humans cattle. Multinomial logistic regression showed ST SN from cattle had greater probability of resistance to multiple classes of anti-microbials than ST SN from humans (P < 0.0001). While these findings could be consistent with the belief that cattle are a source of resistant ST SN for people, occurrence of profiles unique to cattle not observed in temporally related human isolates indicates these profiles are circulating in cattle only. We used various measures to assess AMR diversity, conditional on the weighting of rare versus abundant profiles. AMR profile richness was greater in the common serovars from humans, although both source data sets were dominated by relatively few profiles. The greater profile richness in human Salmonella may be due to greater diversity of sources entering the human population compared to cattle or due to continuous evolution in the human environment. Also, AMR diversity was greater in clinical compared to non-clinical cattle Salmonella, this could be due to anti-microbial selection pressure in diseased cattle that received treatment. The use of bootstrapping techniques showed that although there were shared profiles between humans cattle, the expected observed number of profiles was different, suggesting Salmonella associated resistance from humans cattle may not be wholly derived from a common population

    Prevalence, antimicrobial susceptibility and risk factors associated with non-typhoidal Salmonella on Ugandan layer hen farms

    Get PDF
    Abstract Background Non-typhoidal Salmonella (NTS) are among the leading global foodborne pathogens and a significant public health threat. Their occurrence in animal reservoirs and their susceptibilities to commonly used antimicrobials are poorly understood in developing countries. The aim of this study was to estimate the prevalence, determine antimicrobial susceptibility and identify risk factors associated with NTS presence in laying hen farms in Uganda through a cross-sectional study. Results Pooled faecal samples were collected from 237 laying hen farms and these were analysed for NTS following standard laboratory procedures. In total, 49 farms (20.7%; 95% Confidence interval (CI): 15.6–25.6%) were positive for NTS presence. Altogether, ten Salmonella serotypes were identified among the confirmed 78 isolates, and the predominant serotypes were Salmonella Newport (30.8%), S. Hadar (14.1%), S. Aberdeen (12.8%), S. Heidelberg (12.8%), and S. Bolton (12.8%). Phenotypic antimicrobial resistance was detected in 45(57.7%) of the isolates and the highest resistance was against ciprofloxacin (50.0%) followed by sulphonamides (26.9%) and sulphamethoxazole/trimethoprim (7.7%). Resistance was significantly associated with sampled districts (p = 0.034). Resistance to three or more drugs, multi-drug resistance (MDR) was detected in 12 (15.4%) of the isolates, 9 (75%) of these were from Wakiso district. A multivariable logistic model identified large farm size (OR = 7.0; 95% CI: 2.5–19.8) and the presence of other animal species on the farm (OR = 5.9; 95% CI: 2.1–16.1) as risk factors for NTS prevalence on farms. Having a separate house for birds newly brought to the farms was found to be protective (OR = 0,4; 95% CI: 0.2–0.8). Conclusion This study has highlighted a high prevalence and diversity of NTS species in laying hen farms in Uganda and identified associated risk factors. In addition, it has demonstrated high levels of antimicrobial resistance in isolates of NTS. This could be because of overuse or misuse of antimicrobials in poultry production. Also importantly, the insights provided in this study justifies a strong case for strengthening One Health practices and this will contribute to the development of NTS control strategies at local, national and international levels

    Antimicrobial usage and resistance in beef production

    Full text link
    corecore