920 research outputs found
Estimating hyperparameters and instrument parameters in regularized inversion. Illustration for SPIRE/Herschel map making
We describe regularized methods for image reconstruction and focus on the
question of hyperparameter and instrument parameter estimation, i.e.
unsupervised and myopic problems. We developed a Bayesian framework that is
based on the \post density for all unknown quantities, given the observations.
This density is explored by a Markov Chain Monte-Carlo sampling technique based
on a Gibbs loop and including a Metropolis-Hastings step. The numerical
evaluation relies on the SPIRE instrument of the Herschel observatory. Using
simulated and real observations, we show that the hyperparameters and
instrument parameters are correctly estimated, which opens up many perspectives
for imaging in astrophysics
Optimizing ISOCAM data processing using spatial redundancy
We present new data processing techniques that allow to correct the main
instrumental effects that degrade the images obtained by ISOCAM, the camera on
board the Infrared Space Observatory (ISO). Our techniques take advantage of
the fact that a position on the sky has been observed by several pixels at
different times. We use this information (1) to correct the long term variation
of the detector response, (2) to correct memory effects after glitches and
point sources, and (3) to refine the deglitching process. Our new method allows
the detection of faint extended emission with contrast smaller than 1% of the
zodiacal background. The data reduction corrects instrumental effects to the
point where the noise in the final map is dominated by the readout and the
photon noises. All raster ISOCAM observations can benefit from the data
processing described here. These techniques could also be applied to other
raster type observations (e.g. ISOPHOT or IRAC on SIRTF).Comment: 13 pages, 10 figures, to be published in Astronomy and Astrophysics
Supplement Serie
SPIRE-FTS observations of RCW 120
The expansion of Galactic HII regions can trigger the formation of a new
generation of stars. However, little is know about the physical conditions that
prevail in these regions. We study the physical conditions that prevail in
specific zones towards expanding HII regions that trace representative media
such as the photodissociation region, the ionized region, and condensations
with and without ongoing star formation. We use the SPIRE Fourier Transform
Spectrometer (FTS) on board to observe the HII region RCW 120.
Continuum and lines are observed in the m range. Line intensities
and line ratios are obtained and used as physical diagnostics of the gas. We
used the Meudon PDR code and the RADEX code to derive the gas density and the
radiation field at nine distinct positions including the PDR surface and
regions with and without star-formation activity. For the different regions we
detect the atomic lines [NII] at m and [CI] at and m,
the ladder between the and levels and the
ladder between the and levels, as well as CH in absorption. We find gas temperatures in the range K for
densities of , and a high column density on the order
of that is in agreement with dust
analysis. The ubiquitousness of the atomic and CH emission suggests the
presence of a low-density PDR throughout RCW 120. High-excitation lines of CO
indicate the presence of irradiated dense structures or small dense clumps
containing young stellar objects, while we also find a less dense medium
() with high temperatures (K).Comment: 11 pages, 11 figures, accepted by A&
Over-the-Scope Clip to the Rescue! A Novel Tool for Refractory Acute Nonvariceal Upper Gastrointestinal Hemorrhage
© 2020 © 2020 The Author(s). Published by S. Karger AG, Basel. Nonvariceal upper gastrointestinal hemorrhage (NVUGIH) is more prevalent than lower gastrointestinal hemorrhage and carries a high risk of mortality in the elderly, especially those with significant cardiovascular comorbidities. Traditional endoscopic methods, such as through-the-scope clips, electrocautery, and epinephrine injection, are frequently used to control these bleeds; however, they carry a 10% risk of rebleeding, and this itself carries a mortality risk of 36%. The larger over-the-scope clips (OTSC) that were initially used for the closure of fistulas and perforations are now gradually being implemented to manage NVUGIH. To our knowledge, we present the first cases to be reported in the literature where OTSC was successfully used as salvage therapy for refractory acute upper gastrointestinal bleeders who failed traditional endoscopic management and interventional radiology-guided embolization of the bleeding artery. We also provide an up-to-date literature review on the use of OTSC and its superiority to traditional endoscopic interventions in the management of complicated NVUGIH
Recommended from our members
Selective Lanthanide Sensing with Gold Nanoparticles and Hydroxypyridinone Chelators.
The octadentate hydroxypyridinone chelator 3,4,3-LI(1,2-HOPO) is a promising therapeutic agent because of its high affinity for f-block elements and noncytotoxicity at medical dosages. The interaction between 3,4,3-LI(1,2-HOPO) and other biomedically relevant metals such as gold, however, has not been explored. Gold nanoparticles functionalized with chelators have demonstrated great potential in theranostics, yet thus far, no protocol that combines 3,4,3-LI(1,2-HOPO) and colloidal gold has been developed. Here, we characterize the solution thermodynamic properties of the complexes formed between 3,4,3-LI(1,2-HOPO) and Au3+ ions and demonstrate how under specific pH conditions the chelator promotes the growth of gold nanoparticles, acting as both reducing and stabilizing agent. 3,4,3-LI(1,2-HOPO) ligands on the nanoparticle surface remain active and selective toward f-block elements, as evidenced by gold nanoparticle selective aggregation. Finally, a new colorimetric assay capable of reaching the detection levels necessary for the quantification of lanthanides in waste from industrial processes is developed based on the inhibition of particle growth by lanthanides
Microscopic Colitis After Fecal Microbiota Transplant
Microscopic colitis (MC) is an inflammatory condition of the large bowel that is associated with chronic, nonbloody diarrhea. Colonoscopy usually demonstrates normal mucosa, while tissue biopsy reveals intraepithelial lymphocytes or a subepithelial collagen band. Although no specific antibody has been discovered, MC is associated with several autoimmune disorders such as celiac disease, Hashimoto\u27s thyroiditis, and rheumatoid arthritis. There are only a small number of case reports documenting possible hereditary MC cases, but up to 12% of patients with MC have a family history of inflammatory bowel disease. Other associations include proton pump inhibitor use, cigarette smoking, HLA-DQ2/86, and possibly some gastrointestinal infections
Aromatic emission from the ionised mane of the Horsehead nebula
We study the evolution of the Aromatic Infrared Bands (AIBs) emitters across
the illuminated edge of the Horsehead nebula and especially their survival and
properties in the HII region. We present spectral mapping observations taken
with the Infrared Spectrograph (IRS) at wavelengths 5.2-38 microns. A strong
AIB at 11.3 microns is detected in the HII region, relative to the other AIBs
at 6.2, 7.7 and 8.6 microns. The intensity of this band appears to be
correlated with the intensity of the [NeII] at 12.8 microns and of Halpha,
which shows that the emitters of the 11.3 microns band are located in the
ionised gas. The survival of PAHs in the HII region could be due to the
moderate intensity of the radiation field (G0 about 100) and the lack of
photons with energy above about 25eV. The enhancement of the intensity of the
11.3 microns band in the HII region, relative to the other AIBs can be
explained by the presence of neutral PAHs. Our observations highlight a
transition region between ionised and neutral PAHs observed with ideal
conditions in our Galaxy. A scenario where PAHs can survive in HII regions and
be significantly neutral could explain the detection of a prominent 11.3
microns band in other Spitzer observations.Comment: 9 pages, 9 figures, accepted for publication in A&
Acute Liver Failure in a COVID-19 Patient Without any Preexisting Liver Disease.
In December 2019, an outbreak of novel coronavirus started in Wuhan, China, which gradually spread to the entire world. The World Health Organization (WHO) on February 11, 2020, officially announced the name for the disease as coronavirus disease 2019, abbreviated as COVID-19. It is caused by severe respiratory distress syndrome coronavirus 2 (SARS-CoV-2). The WHO declared SARS-CoV-2 as a pandemic on March 11, 2020. SARS-CoV-2 mainly causes fever as well as respiratory symptoms such as cough and shortness of breath. Gastrointestinal/hepatic sequelae such as diarrhea, nausea, vomiting, and elevated liver enzymes have been reported as well. Studies and data so far on coronavirus infections from China, Singapore, and other countries showed that liver enzymes elevation could be seen in 20-50% of cases. More severe disease can correlate with the worsening of liver enzymes. However, acute liver failure in patients with COVID-19 has not been described. Herein we report a case of acute liver failure in an elderly patient with COVID-19 infection who did not have a history of preexisting liver disease
A Case of Wernicke\u27s Encephalopathy in a Pregnant Woman With a History of Sleeve Gastrectomy.
Wernicke\u27s encephalopathy (WE) is a neurological complication of thiamine deficiency characterized by a triad of acute confusion, ataxia, and ophthalmoplegia. Even though it is most common in chronic alcoholism, an increase in prevalence has been reported recently due to the increased popularity of bariatric surgeries. WE is a known neurological complication after gastric bypass surgery but rarely reported after sleeve gastrectomy. We present a unique case of WE in pregnant women four months after sleeve gastrectomy
- …