678 research outputs found

    Formation of Aluminum-Doped Zinc Oxide Nanocrystals via the Benzylamine Route at Low Reaction Kinetics

    Get PDF
    The influence of essential process parameters on the adjustability of specific process and particulate properties of aluminum‐doped zinc oxide (AZO) nanocrystals during synthesis via the benzylamine route at low reaction kinetics is demonstrated by enabling time‐resolved access of the selected measurement technique. It is shown that the validity of the pseudo‐first‐order process kinetics could be extended to the minimum operable reaction kinetics. On the other hand, the impacts of the process temperature and the initial precursor concentration on both the process kinetics and the particle morphology are discussed. The obtained data provide a versatile tool for precise process control by adjusting defined application‐specific particle properties of AZO during synthesis

    Performance of high impedance resonators in dirty dielectric environments

    Get PDF
    High-impedance resonators are a promising contender for realizing long-distance entangling gates between spin qubits. Often, the fabrication of spin qubits relies on the use of gate dielectrics which are detrimental to the quality of the resonator. Here, we investigate loss mechanisms of high-impedance NbTiN resonators in the vicinity of thermally grown SiO2 and Al2O3 fabricated by atomic layer deposition. We benchmark the resonator performance in elevated magnetic fields and at elevated temperatures and find that the internal quality factors are limited by the coupling between the resonator and two-level systems of the employed oxides. Nonetheless, the internal quality factors of high-impedance resonators exceed 103 in all investigated oxide configurations which implies that the dielectric configuration would not limit the performance of resonators integrated in a spin-qubit device. Because these oxides are commonly used for spin qubit device fabrication, our results allow for straightforward integration of high-impedance resonators into spin-based quantum processors. Hence, these experiments pave the way for large-scale, spin-based quantum computers

    In-situ Tuning of the Electric Dipole Strength of a Double Dot Charge Qubit: Charge Noise Protection and Ultra Strong Coupling

    Full text link
    Semiconductor quantum dots, where electrons or holes are isolated via electrostatic potentials generated by surface gates, are promising building blocks for semiconductor-based quantum technology. Here, we investigate double quantum dot (DQD) charge qubits in GaAs, capacitively coupled to high-impedance SQUID array and Josephson junction array resonators. We tune the strength of the electric dipole interaction between the qubit and the resonator in-situ using surface gates. We characterize the qubit-resonator coupling strength, qubit decoherence, and detuning noise affecting the charge qubit for different electrostatic DQD configurations. We find that all quantities can be tuned systematically over more than one order of magnitude, resulting in reproducible decoherence rates Γ2/2π< 5\Gamma_2/2\pi<~5 MHz in the limit of high interdot capacitance. Conversely, by reducing the interdot capacitance, we can increase the DQD electric dipole strength, and therefore its coupling to the resonator. By employing a Josephson junction array resonator with an impedance of 4\sim4 kΩ\Omega and a resonance frequency of ωr/2π5.6\omega_r/2\pi \sim 5.6 GHz, we observe a coupling strength of g/2π630g/2\pi \sim 630 MHz, demonstrating the possibility to achieve the ultrastrong coupling regime (USC) for electrons hosted in a semiconductor DQD. These results are essential for further increasing the coherence of quantum dot based qubits and investigating USC physics in semiconducting QDs.Comment: 24 pages, 13 figure

    Photon-mediated long range coupling of two Andreev level qubits

    Full text link
    In a superconducting weak link, the supercurrent is carried by Andreev bound states (ABSs) formed by the phase-coherent reflection of electrons and their time-reversed partners. A single, highly transmissive ABS can serve as an ideal, compact two-level system, due to a potentially large energy difference to the next ABS. While the coherent manipulation of such Andreev levels qubits (ALQs) has been demonstrated, a long-range coupling between two ALQs, necessary for advanced qubit architectures, has not been achieved, yet. Here, we demonstrate a coherent remote coupling between two ALQs, mediated by a microwave photon in a novel superconducting microwave cavity coupler. The latter hosts two modes with different coupling rates to an external port. This allows us to perform fast readout of each qubit using the strongly coupled mode, while the weakly coupled mode is utilized to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with avoided-crossings, in very good agreement with the Tavis-Cummings model. Based on this model, we identify highly entangled two-qubit states for which the entanglement is mediated over a distance of six millimeters. This work establishes ALQs as compact and scalable solid-state qubits.Comment: 13 pages, 7 figure

    Observational Constraints on Interstellar Grain Alignment

    Full text link
    We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavelength of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa

    Banking union in historical perspective: the initiative of the European Commission in the 1960s-1970s

    Get PDF
    This article shows that planning for the organization of EU banking regulation and supervision did not just appear on the agenda in recent years with discussions over the creation of the eurozone banking union. It unveils a hitherto neglected initiative of the European Commission in the 1960s and early 1970s. Drawing on extensive archival work, this article explains that this initiative, however, rested on a number of different assumptions, and emerged in a much different context. It first explains that the Commission's initial project was not crisis-driven; that it articulated the link between monetary integration and banking regulation; and finally that it did not set out to move the supervisory framework to the supranational level, unlike present-day developments

    Serum Creatinine and Tacrolimus Assessment With VAMS Finger-Prick Microsampling: A Diagnostic Test Study

    Get PDF
    Rationale & Objective: Kidney transplant recipients require frequent venipunctures. Microsampling methods that use a finger-prick draw of capillary blood, like volumetric absorptive microsamplers (VAMS), have the potential to reduce the pain, inconvenience, and volume of blood loss associated with venipuncture. This study aimed to provide diagnostic accuracy using VAMS for measurement of tacrolimus and creatinine compared to gold standard venous blood in adult kidney transplant recipients. Study Design: Diagnostic test study. Prospective blood samples for measurement of tacrolimus and creatinine were collected using Mitra VAMS and venipuncture immediately before and 2 hours after tacrolimus dosing. Setting & Participants: A convenience sample of 40 adult kidney transplant participants in the outpatient setting. Tests Compared: Method comparison was assessed by Passing-Bablok regression and Bland-Altman analysis. The predictive performance of VAMS measurement compared to venipuncture was also assessed through estimation of the median prediction error and median absolute percentage prediction error. Results: A total of 74 tacrolimus samples and 70 creatinine samples were analyzed from 40 participants. Passing-Bablok regression showed a systematic difference between VAMS and venipuncture when measuring tacrolimus and creatinine with a slope of 1.08 (95% CI, 1.03-1.13) and a slope of 0.65 (95% CI, 0.6-0.7), respectively. These values were then corrected for the systematic difference. When used for Bland-Altman analysis, corrected values of tacrolimus and creatinine showed a bias of -0.1 μg/L and 0.04 mg/dL, respectively. Tacrolimus (corrected) and creatinine (corrected) microsampling values when compared to corresponding venipuncture values met median prediction error and median absolute percentage prediction error predefined acceptability limits of <15%. Limitations: This study was conducted in a controlled environment using a trained nurse to collect VAMS samples. Conclusions: In this study, VAMS was used to reliably measured tacrolimus and creatinine. This represents a clear opportunity for more frequent and less invasive sampling for patients

    Impact of β-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy

    Get PDF
    The objective of this study was to describe the effect of therapeutic drug monitoring (TDM) and dose adjustments of β-lactam antibiotics administered to critically ill patients undergoing continuous renal replacement therapy (CRRT) in a 30-bed tertiary intensive care unit (ICU). β-Lactam TDM data in our tertiary referral ICU were retrospectively reviewed. Clinical, demographic and dosing data were collected for patients administered β-lactam antibiotics while undergoing CRRT. The target trough concentration range was 1–10× the minimum inhibitory concentration (MIC). A total of 111 TDM samples from 76 patients (46 male) with a mean ± standard deviation age of 56.6 ± 15.9 years and weight of 89.1 ± 25.8 kg were identified. The duration of antibiotic therapy was between 2 days and 42 days. TDM identified a need for dose modification of β-lactam antibiotics in 39 (35%) instances; in 27 (24%) samples, TDM values resulted in decreasing the prescribed dose of β-lactam antibiotic whereas an increase in the prescribed dose occurred in 12 (11%) cases. In patients treated for hospital-acquired pneumonia and primary or secondary bacteraemia, the dose was required to be decreased in 10/25 (40%) and 7/46 (15%) cases, respectively, to attain target concentrations. β-Lactam TDM is a useful tool for guiding drug dosing in complex patients such as those receiving CRRT. Although over one-third of patients manifested concentrations outside the therapeutic range, most of these CRRT patients had excessive β-lactam concentrations

    Calcium Carbonate Hexahydrate from Organic-Rich Sediments of the Antarctic Shelf: Precursors of Glendonites

    Get PDF
    Large euhedral crystals of calcium carbonate hexahydrate were recovered from a shelf basin of the Bransfield Strait, Antarctic Peninsula, at a water depth of 1950 meters and sub-zero bottom water temperatures. The chemistry, mineralogy, and stable isotope composition of this hydrated calcium carbonate phase, its environment of formation, and its mode of precipitation confirm the properties variously attributed to hypothetical precursors of the glendonites and thereby greatly expand their use in paleoceanographic interpretation
    corecore