156 research outputs found

    A Preliminary Abundance Estimate Of An Atlantic Sturgeon (Acipenser Oxyrinchus Oxyrinchus) Contingent Within An Open Riverine System

    Get PDF
    Abundance estimates are essential for fisheries management, but estimating the abundance of open populations with low recapture rates has historically been unreliable. However, by using mark-recapture data modulated with survivability parameters obtained from analysis of acoustic telemetry data, more accurate abundance estimates can be made for species that exhibit these characteristics. One such species is the Atlantic sturgeon, for which abundance estimates were designated a research priority following precipitous population declines throughout the 20th century. We addressed this research need in the Saco River Estuary (SRE), a system where the Atlantic sturgeon has been extensively studied using mark-recapture and acoustic telemetry methods since 2009. These data were analyzed using Bayesian analysis of a Lincoln-Peterson estimator, constrained with parameters from a Cormack-Jolly-Seber model, to provide an initial abundance estimate for the system. The resulting estimate indicated that approximately 3 299 (95% Credible Interval: 1 462–6 828) Atlantic sturgeon utilize the SRE yearly, suggesting that the SRE provides critical foraging habitat to a large contingent of the species within the Gulf of Maine. The present study demonstrated the method utilized herein was effective in generating a reasonable estimate of abundance in an open system where recapture events are rare, and therefore may provide a valuable technique for supplying initial estimates of fish abundance in additional systems that display similar characteristics

    A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Get PDF
    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspBBR), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspBBR structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspBBR-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues

    Short-term post release mortality of skates (family Rajidae) discarded in a western North Atlantic commercial otter trawl fishery

    Get PDF
    a b s t r a c t Due to market and regulatory factors, Rajidae skates are routinely discarded by commercial otter trawlers in the western North Atlantic. Accounting for post-release mortality is therefore essential to total fishing mortality estimates, stock status and management of this group of fishes. However, despite a presumed species-specific range in tolerance, few studies have investigated the short-term post-release mortality among skates indigenous to the western North Atlantic following capture by mobile fishing gears, and never in the Gulf of Maine. This study addresses this shortfall for the prohibited thorny skate, Amblyraja radiate and smooth skate, Malacoraja senta, and the targeted winter skate, Leucoraja ocellata, and little skate, Leucoraja erinacea. Of 1288 skates evaluated, negligible immediate mortality was observed at the time of capture, even in relation to the largest catches and/or most prolonged tows. However, injury frequency was moderate, with highest levels in the smooth (60%) and thorny (52%) skates. Aside from the smooth skate (59%), 72 h mortality rates were low overall (19% across all species when accounting tow durations indicative of the fishery), with the winter skate (8%) exhibiting the lowest levels. Logistic regression modeling revealed tow duration as the most universal predictor of condition and 72 h mortality, while catch biomass, sex, temperature changes, and animal size also held influence in certain species. Although in general the studied species appear more resilient to trawl capture and handling than previously estimated, interspecific differences must be accounted for when managing this group

    Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

    Get PDF
    Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5ng-1 bee), or one of two low doses (0.377 or 0.091ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing
    corecore