366 research outputs found

    Close limit evolution of Kerr-Schild type initial data for binary black holes

    Get PDF
    We evolve the binary black hole initial data family proposed by Bishop {\em et al.} in the limit in which the black holes are close to each other. We present an exact solution of the linearized initial value problem based on their proposal and make use of a recently introduced generalized formalism for studying perturbations of Schwarzschild black holes in arbitrary coordinates to perform the evolution. We clarify the meaning of the free parameters of the initial data family through the results for the radiated energy and waveforms from the black hole collision.Comment: 8 pages, RevTex, four eps figure

    Initial data for stationary space-times near space-like infinity

    Full text link
    We study Cauchy initial data for asymptotically flat, stationary vacuum space-times near space-like infinity. The fall-off behavior of the intrinsic metric and the extrinsic curvature is characterized. We prove that they have an analytic expansion in powers of a radial coordinate. The coefficients of the expansion are analytic functions of the angles. This result allow us to fill a gap in the proof found in the literature of the statement that all asymptotically flat, vacuum stationary space-times admit an analytic compactification at null infinity. Stationary initial data are physical important and highly non-trivial examples of a large class of data with similar regularity properties at space-like infinity, namely, initial data for which the metric and the extrinsic curvature have asymptotic expansion in terms of powers of a radial coordinate. We isolate the property of the stationary data which is responsible for this kind of expansion.Comment: LaTeX 2e, no figures, 12 page

    Conformally flat black hole initial data, with one cylindrical end

    Full text link
    We give a complete analytical proof of existence and uniqueness of extreme-like black hole initial data for Einstein equations, which possess a cilindrical end, analogous to extreme Kerr, extreme Reissner Nordstrom, and extreme Bowen-York's initial data. This extends and refines a previous result \cite{dain-gabach09} to a general case of conformally flat, maximal initial data with angular momentum, linear momentum and matter.Comment: Minor changes and formula (21) revised according to the published version in Class. Quantum Grav. (2010). Results unchange

    Area-charge inequality for black holes

    Full text link
    The inequality between area and charge A≥4πQ2A\geq 4\pi Q^2 for dynamical black holes is proved. No symmetry assumption is made and charged matter fields are included. Extensions of this inequality are also proved for regions in the spacetime which are not necessarily black hole boundaries.Comment: 21 pages, 2 figure

    Initial data for fluid bodies in general relativity

    Get PDF
    We show that there exist asymptotically flat almost-smooth initial data for Einstein-perfect fluid's equation that represent an isolated liquid-type body. By liquid-type body we mean that the fluid energy density has compact support and takes a strictly positive constant value at its boundary. By almost-smooth we mean that all initial data fields are smooth everywhere on the initial hypersurface except at the body boundary, where tangential derivatives of any order are continuous at that boundary. PACS: 04.20.Ex, 04.40.Nr, 02.30.JrComment: 38 pages, LaTeX 2e, no figures. Accepted for publication in Phys. Rev.

    Black Hole Interaction Energy

    Get PDF
    The interaction energy between two black holes at large separation distance is calculated. The first term in the expansion corresponds to the Newtonian interaction between the masses. The second term corresponds to the spin-spin interaction. The calculation is based on the interaction energy defined on the two black holes initial data. No test particle approximation is used. The relation between this formula and cosmic censorship is discussed.Comment: 18 pages, 2 figures, LaTeX2

    Extreme Bowen-York initial data

    Full text link
    The Bowen-York family of spinning black hole initial data depends essentially on one, positive, free parameter. The extreme limit corresponds to making this parameter equal to zero. This choice represents a singular limit for the constraint equations. We prove that in this limit a new solution of the constraint equations is obtained. These initial data have similar properties to the extreme Kerr and Reissner-Nordstrom black hole initial data. In particular, in this limit one of the asymptotic ends changes from asymptotically flat to cylindrical. The existence proof is constructive, we actually show that a sequence of Bowen-York data converges to the extreme solution.Comment: 21 page

    A new geometric invariant on initial data for Einstein equations

    Get PDF
    For a given asymptotically flat initial data set for Einstein equations a new geometric invariant is constructed. This invariant measure the departure of the data set from the stationary regime, it vanishes if and only if the data is stationary. In vacuum, it can be interpreted as a measure of the total amount of radiation contained in the data.Comment: 5 pages. Important corrections regarding the generalization to the non-time symmetric cas

    Asymptotic properties of the development of conformally flat data near spatial infinity

    Get PDF
    Certain aspects of the behaviour of the gravitational field near null and spatial infinity for the developments of asymptotically Euclidean, conformally flat initial data sets are analysed. Ideas and results from two different approaches are combined: on the one hand the null infinity formalism related to the asymptotic characteristic initial value problem and on the other the regular Cauchy initial value problem at spatial infinity which uses Friedrich's representation of spatial infinity as a cylinder. The decay of the Weyl tensor for the developments of the class of initial data under consideration is analysed under some existence and regularity assumptions for the asymptotic expansions obtained using the cylinder at spatial infinity. Conditions on the initial data to obtain developments satisfying the Peeling Behaviour are identified. Further, the decay of the asymptotic shear on null infinity is also examined as one approaches spatial infinity. This decay is related to the possibility of selecting the Poincar\'e group out of the BMS group in a canonical fashion. It is found that for the class of initial data under consideration, if the development peels, then the asymptotic shear goes to zero at spatial infinity. Expansions of the Bondi mass are also examined. Finally, the Newman-Penrose constants of the spacetime are written in terms of initial data quantities and it is shown that the constants defined at future null infinity are equal to those at past null infinity.Comment: 24 pages, 1 figur

    On the existence of initial data containing isolated black holes

    Get PDF
    We present a general construction of initial data for Einstein's equations containing an arbitrary number of black holes, each of which is instantaneously in equilibrium. Each black hole is taken to be a marginally trapped surface and plays the role of the inner boundary of the Cauchy surface. The black hole is taken to be instantaneously isolated if its outgoing null rays are shear-free. Starting from the choice of a conformal metric and the freely specifiable part of the extrinsic curvature in the bulk, we give a prescription for choosing the shape of the inner boundaries and the boundary conditions that must be imposed there. We show rigorously that with these choices, the resulting non-linear elliptic system always admits solutions.Comment: 11 pages, 2 figures, RevTeX
    • …
    corecore