160 research outputs found

    Liquid Transport Due to Light Scattering

    Get PDF
    Using experiments and theory, we show that light scattering by inhomogeneities in the index of refraction of a fluid can drive a large-scale flow. The experiment uses a near-critical, phase-separated liquid, which experiences large fluctuations in its index of refraction. A laser beam traversing the liquid produces a large-scale deformation of the interface and can cause a liquid jet to form. We demonstrate that the deformation is produced by a scattering-induced flow by obtaining good agreements between the measured deformations and those calculated assuming this mechanism.Comment: 4 pages, 5 figures, submitted to Physical Review Letters v2: Edited based on comments from referee

    Stretching and squeezing of sessile dielectric drops by the optical radiation pressure

    Full text link
    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semi-angle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus". These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale

    LBS GatlingGun13A

    Get PDF

    Experimental characterization of hot-electron emission and shock dynamics in the context of the shock ignition approach to inertial confinement fusion

    Get PDF
    We report on planar target experiments conducted on the OMEGA-EP laser facility performed in the context of the shock ignition (SI) approach to inertial confinement fusion. The experiment aimed at characterizing the propagation of strong shock in matter and the generation of hot electrons (HEs), with laser parameters relevant to SI (1-ns UV laser beams with I ∼1016 W/cm2). Time-resolved radiographs of the propagating shock front were performed in order to study the hydrodynamic evolution. The hot-electron source was characterized in terms of Maxwellian temperature, Th, and laser to hot-electron energy conversion efficiency η using data from different X-ray spectrometers. The post-processing of these data gives a range of the possible values for Th and η [i.e., T h [keV] a (20, 50) and η a (2%, 13%)]. These values are used as input in hydrodynamic simulations to reproduce the results obtained in radiographs, thus constraining the range for the HE measurements. According to this procedure, we found that the laser converts ∼10% ± 4% of energy into hot electrons with Th = 27 ± 8 keV. The paper shows how the coupling of different diagnostics and numerical tools is required to sufficiently constrain the problem, solving the large ambiguity coming from the post-processing of spectrometers data. The effect of the hot electrons on the shock dynamics is then discussed, showing an increase in the pressure around the shock front. The low temperature found in this experiment without pre-compression laser pulses could be advantageous for the SI scheme, but the high conversion efficiency may lead to an increase in the shell adiabat, with detrimental effects on the implosion

    The Presence–Absence Situation and Its Impact on the Assemblage Structure and Interspecific Relations of Pronophilina Butterflies in the Venezuelan Andes (Lepidoptera: Nymphalidae)

    Get PDF
    Assemblage structure and altitudinal patterns of Pronophilina, a species-rich group of Andean butterflies, are compared in El Baho and Monte Zerpa, two closely situated and ecologically similar Andean localities. Their faunas differ only by the absence of Pedaliodes ornata Grose-Smith in El Baho. There are, however, important structural differences between the two Pronophilina assemblages. Whereas there are five co-dominant species in Monte Zerpa, including P. ornata, Pedaliodes minabilis Pyrcz is the only dominant with more than half of all the individuals in the sample in El Baho. The absence of P. ornata in El Baho is investigated from historical, geographic, and ecological perspectives exploring the factors responsible for its possible extinction including climate change, mass dying out of host plants, and competitive exclusion. Although competitive exclusion between P. ornata and P. minabilis is a plausible mechanism, considered that their ecological niches overlap, which suggests a limiting influence on each other’s populations, the object of competition was not identified, and the reason of the absence of P. ornata in El Baho could not be established. The role of spatial interference related to imperfect sexual behavioral isolation is evaluated in maintaining the parapatric altitudinal distributions of three pairs of phenotypically similar and related species of Pedaliodes, Corades, and Lymanopoda

    Computerized clinical decision support systems for acute care management: A decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute medical care often demands timely, accurate decisions in complex situations. Computerized clinical decision support systems (CCDSSs) have many features that could help. However, as for any medical intervention, claims that CCDSSs improve care processes and patient outcomes need to be rigorously assessed. The objective of this review was to systematically review the effects of CCDSSs on process of care and patient outcomes for acute medical care.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. MEDLINE, EMBASE, Evidence-Based Medicine Reviews databases (Cochrane Database of Systematic Reviews, DARE, ACP Journal Club, and others), and the Inspec bibliographic database were searched to January 2010, in all languages, for randomized controlled trials (RCTs) of CCDSSs in all clinical areas. We included RCTs that evaluated the effect on process of care or patient outcomes of a CCDSS used for acute medical care compared with care provided without a CCDSS. A study was considered to have a positive effect (<it>i.e.</it>, CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive.</p> <p>Results</p> <p>Thirty-six studies met our inclusion criteria for acute medical care. The CCDSS improved process of care in 63% (22/35) of studies, including 64% (9/14) of medication dosing assistants, 82% (9/11) of management assistants using alerts/reminders, 38% (3/8) of management assistants using guidelines/algorithms, and 67% (2/3) of diagnostic assistants. Twenty studies evaluated patient outcomes, of which three (15%) reported improvements, all of which were medication dosing assistants.</p> <p>Conclusion</p> <p>The majority of CCDSSs demonstrated improvements in process of care, but patient outcomes were less likely to be evaluated and far less likely to show positive results.</p

    Computerized clinical decision support systems for therapeutic drug monitoring and dosing: A decision-maker-researcher partnership systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some drugs have a narrow therapeutic range and require monitoring and dose adjustments to optimize their efficacy and safety. Computerized clinical decision support systems (CCDSSs) may improve the net benefit of these drugs. The objective of this review was to determine if CCDSSs improve processes of care or patient outcomes for therapeutic drug monitoring and dosing.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. Studies from our previous review were included, and new studies were sought until January 2010 in MEDLINE, EMBASE, Evidence-Based Medicine Reviews, and Inspec databases. Randomized controlled trials assessing the effect of a CCDSS on process of care or patient outcomes were selected by pairs of independent reviewers. A study was considered to have a positive effect (<it>i.e.</it>, CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive.</p> <p>Results</p> <p>Thirty-three randomized controlled trials were identified, assessing the effect of a CCDSS on management of vitamin K antagonists (14), insulin (6), theophylline/aminophylline (4), aminoglycosides (3), digoxin (2), lidocaine (1), or as part of a multifaceted approach (3). Cluster randomization was rarely used (18%) and CCDSSs were usually stand-alone systems (76%) primarily used by physicians (85%). Overall, 18 of 30 studies (60%) showed an improvement in the process of care and 4 of 19 (21%) an improvement in patient outcomes. All evaluable studies assessing insulin dosing for glycaemic control showed an improvement. In meta-analysis, CCDSSs for vitamin K antagonist dosing significantly improved time in therapeutic range.</p> <p>Conclusions</p> <p>CCDSSs have potential for improving process of care for therapeutic drug monitoring and dosing, specifically insulin and vitamin K antagonist dosing. However, studies were small and generally of modest quality, and effects on patient outcomes were uncertain, with no convincing benefit in the largest studies. At present, no firm recommendation for specific systems can be given. More potent CCDSSs need to be developed and should be evaluated by independent researchers using cluster randomization and primarily assess patient outcomes related to drug efficacy and safety.</p
    corecore