1,114 research outputs found

    Satellite Evidence of Hurricane-Induced Phytoplankton Blooms in an Oceanic Desert

    Get PDF
    The physical effects of hurricanes include deepening of the mixed layer and decreasing of the sea surface temperature in response to entrainment, curl-induced upwelling, and increased upper ocean cooling. However, the biological effects of hurricanes remain relatively unexplored. In this paper, we examine the passages of 13 hurricanes through the Sargasso Sea region of the North Atlantic during the years 1998 through 2001. Remotely sensed ocean color shows increased concentrations of surface chlorophyll within the cool wakes of the hurricanes, apparently in response to the injection of nutrients and/or biogenic pigments into the oligotrophic surface waters. This increase in post-storm surface chlorophyll concentration usually lasted 2-3 weeks before it returned to its nominal pre-hurricane level

    Developments in fuel cell technologies in the transport sector

    Get PDF
    The demand for clean power source which can be used to run the various types of vehicles on the road is increasing on a daily basis due to the fact that high emissions released from internal combustion engine play a significant role in air pollution and climate change. Fuel cell devices, particularly Proton Exchange Membrane (PEM) type, are strong candidates to replace the internal combustion engines in the transport industry. The PEMFC technology still has many challenges including high cost, low durability and hydrogen storage problems which limit the wide-world commercialization of this technology. In this paper, the fuel cell cost, durability and performances challenges which are associated with using of fuel cell technology for transport applications are detailed and reviewed. Recent developments that deal with the proposed challenges are reported. Furthermore, problems of hydrogen infrastructure and hydrogen storage in the fuel cell vehicle are discussed

    Ex-situ evaluation of PTFE coated metals in a proton exchange membrane fuel cell environment

    Get PDF
    Metallic-based bipolar plates exhibit several advantages over graphite-based plates, including higher strength, lower manufacturing cost and better electrical conductivity. However, poor corrosion resistance and high interfacial contact resistance (ICR) are major challenges for metallic bipolar plates used in proton exchange membrane (PEM) fuel cells. Corrosion of metallic parts in PEM fuel cells not only increases the interfacial contact resistance but it can also decrease the proton conductivity of the Membrane Electrode Assembly (MEA), due to catalyst poisoning phenomena caused by corrosive products. In this paper, a composite coating of polytetrafluoroethylene (PTFE) was deposited on stainless steel alloys (SS304, SS316L) and Titanium (G-T2) via a CoBlast™ process. Corrosion resistance of the coated and uncoated metals in a simulated PEM fuel cell environment of 0.5 M H2SO4 + 2 ppm HF at 70 °C was evaluated using potentiodynamic polarisation. ICR between the selected metals and carbon paper was measured and used as an indicator of surface conductivity. Scanning Electron Microscopy (SEM), 3D microscopy, Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD), and contact angle measurements were used to characterise the samples. The results showed that the PTFE coating improved the hydrophobicity and corrosion resistance but increased the ICR of the coated metals due to the unconductive nature of such coating. Thus, it was concluded that it is not fully feasible to use the PTFE alone for coating metals for fuel cell applications and a hybrid coating consisting of PTFE and a conductive material is needed to improve surface conductivity.Enterprise Irelan

    The Role of the Indian Ocean Sector for Prediction of the Coupled Indo-Pacific System: Impact of Atmospheric Coupling

    Get PDF
    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times

    Increasing compliance with wearing a medical device in children with autism

    Full text link
    Health professionals often recommend the use of medical devices to assess the health, monitor the well-being, or improve the quality of life of their patients. Children with autism may present challenges in these situations as their sensory peculiarities may increase refusals to wear such devices. To address this issue, we systematically replicated prior research by examining the effects of differential reinforcement of other behavior (DRO) to increase compliance with wearing a heart rate monitor in 2 children with autism. The intervention increased compliance to 100% for both participants when an edible reinforcer was delivered every 90 s. The results indicate that DRO does not require the implementation of extinction to increase compliance with wearing a medical device. More research is needed to examine whether the reinforcement schedule can be further thinned
    • …
    corecore