16 research outputs found
Small Scale Farming and Agricultural Products Marketing for Sustainable Poverty Alleviation in Nigeria
Agricultural productions in developing countries have largely been on subsistence basis. The farmers only produce for their families and quantity of food produced are grossly inadequate for the growing population. There is increase widespread in the level of poverty amongst the people, most especially those living in the rural areas. Small scale farming has become one of the ways to tackle the problem of lack and poverty amongst these people. The paper therefore, examines how Small Scale farming assists in alleviating poverty in both rural and urban cities; most especially through marketing of agricultural products to the people. Relevant data were sought from the 356 respondents selected for the study through the Key Informant Interviews (KII). The Student T test and Chi square statistical techniques were further employed to test the Hypotheses stated in the study. Result of the finding reveals the importance of Small Scale Farming and Agricultural Products Marketing in poverty alleviation, most especially among the rural dwellers. It also indicated lack of access to fund as the major problem facing Small Scale Farming and increase cost of transportation as the major problem facing marketing of agricultural products. The Paper recommends that Individuals and Government can combat some of these challenges facing Small Scale Farming by providing adequate basic social infrastructures; make available more funds to the farmers and create more employment opportunities amongst others. The paper concludes that Agriculture no doubt, is an important sector that needs to be given attention in any developing economy. Key words: Small scale farming; Marketing; Rural dwellers; Key interview guide; Agricultural products and poverty Résumé: Les productions agricoles dans les pays en voie de développement étaient principalement sur la base de subsistance. Les agriculteurs ne produisent que pour leurs familles et la quantité des aliments produits est nettement insuffisante pour la population croissante. Il y a une augmentation généralisée de la pauvreté parmi la population, plus particulièrement ceux vivant dans les zones rurales. L'agriculture à petite échelle est devenue l'une des façons pour s'attaquer au problème du manque et de la pauvreté parmi cette population. L'article examine donc comment l'agriculture à petite échelle aide à soulager le problème de la pauvreté dans les villes rurales et urbaines; plus particulièrement à travers la commercialisation des produits agricoles. Des données pertinentes ont été recueillies auprès des 356 répondants sélectionnés pour l'étude en utilisant la méthode des interviews d'informateurs clés (IIC). Le test T et les techniques statistiques de Chi carré ont été employés plus tard pour tester les hypothèses énoncées dans l'étude. Le résultat de la recherche révèle l'importance de l'agriculture à petite échelle et la commercialisation des produits agricoles dans la réduction de la pauvreté, surtout parmi les habitants des zones rurales. Il a également indiqué le manque d'accès aux fonds comme le problème majeur auquel l'agriculture à petite échelle fait face et les coûts de transport croissant comme le problème majeur de commercialisation des produits agricoles. Le document recommande que les individus et le gouvernement peuvent combattre certains de ces défis confrontés par l'agriculture à petite échelle, en assurant des adéquates infrastructures sociales de base; mettant plus de fonds à la disposition des agriculteurs et créant davantage d'emplois entre autres. L'article conclut que l'agriculture est sans aucun doute un secteur important qui doit être accordé plus d'attention dans n'importe quelle économie en développement. Mots-clés: Petite agriculture à petite échelle; Commercialisation; Habitants ruraux; Guide d'interview clés; Produits agricoles et pauvret
Temperature-Stable Dielectric Ceramics based on Na₀.₅Bi₀.₅TiO₃
Multiple ion substitutions to Na0.5Bi0.5TiO3 give rise to favourable dielectric properties over the technologically important temperature range −55 °C to 300 °C. A relative permittivity, εr, = 1300 ± 15% was recorded, with low loss tangent, tanδ ≤ 0.025, for temperatures from 310 °C to 0 °C, tanδ increasing to 0.05 at −55 °C (1 kHz) in the targeted solid solution (1–x)[0.85Na0.5Bi0.5TiO3–0.15Ba0.8Ca0.2Ti1-yZryO3]–xNaNbO3: x = 0.3, y = 0.2. The εr-T plots for NaNbO3 contents x < 0.2 exhibited a frequency-dependent inflection below the temperature of a broad dielectric peak. Higher levels of niobate substitution resulted in a single peak with frequency dispersion, typical of a normal relaxor ferroelectric. Experimental trends in properties suggest that the dielectric inflection is the true relaxor dielectric peak and appears as an inflection due to overlap with an independent broad dielectric peak. Process-related cation and oxygen vacancies and their possible contributions to dielectric properties are discussed
Systematic Investigation of the Physicochemical Factors That Contribute to the Toxicity of ZnO Nanoparticles
ZnO
nanoparticles (NPs) are prone to dissolution, and uncertainty
remains whether biological/cellular responses to ZnO NPs are solely
due to the release of Zn<sup>2+</sup> or whether the NPs themselves
have additional toxic effects. We address this by establishing ZnO
NP solubility in dispersion media (Dulbecco’s modified Eagle’s
medium, DMEM) held under conditions identical to those employed for
cell culture (37 °C, 5% CO<sub>2</sub>, and pH 7.68) and by systematic
comparison of cell–NP interaction for three different ZnO NP
preparations. For NPs at concentrations up to 5.5 μg ZnO/mL,
dissolution is complete (with the majority of the soluble zinc complexed
to dissolved ligands in the medium), taking ca. 1 h for uncoated and
ca. 6 h for polymer coated ones. Above 5.5 μg/mL, the results
are consistent with the formation of zinc carbonate, keeping the solubilized
zinc fixed to 67 μM of which only 0.45 μM is as free Zn<sup>2+</sup>, i.e., not complexed to dissolved ligands. At these relatively
high concentrations, NPs with an aliphatic polyether-coating show
slower dissolution (i.e., slower free Zn<sup>2+</sup> release) and
reprecipitation kinetics compared to those of uncoated NPs, requiring
more than 48 h to reach thermodynamic equilibrium. Cytotoxicity (MTT)
and DNA damage (Comet) assay dose–response curves for three
epithelial cell lines suggest that dissolution and reprecipitation
dominate for uncoated ZnO NPs. Transmission electron microscopy combined
with the monitoring of intracellular Zn<sup>2+</sup> concentrations
and ZnO–NP interactions with model lipid membranes indicate
that an aliphatic polyether coat on ZnO NPs increases cellular uptake,
enhancing toxicity by enabling intracellular dissolution and release
of Zn<sup>2+</sup>. Similarly, we demonstrate that needle-like NP
morphologies enhance toxicity by apparently frustrating cellular uptake.
To limit toxicity, ZnO NPs with nonacicular morphologies and coatings
that only weakly interact with cellular membranes are recommended
Systematic investigation of the physicochemical factors that contribute to the toxicity of ZnO nanoparticles.
ZnO nanoparticles (NPs) are prone to dissolution, and uncertainty remains whether biological/cellular responses to ZnO NPs are solely due to the release of Zn(2+) or whether the NPs themselves have additional toxic effects. We address this by establishing ZnO NP solubility in dispersion media (Dulbecco's modified Eagle's medium, DMEM) held under conditions identical to those employed for cell culture (37 °C, 5% CO2, and pH 7.68) and by systematic comparison of cell-NP interaction for three different ZnO NP preparations. For NPs at concentrations up to 5.5 μg ZnO/mL, dissolution is complete (with the majority of the soluble zinc complexed to dissolved ligands in the medium), taking ca. 1 h for uncoated and ca. 6 h for polymer coated ones. Above 5.5 μg/mL, the results are consistent with the formation of zinc carbonate, keeping the solubilized zinc fixed to 67 μM of which only 0.45 μM is as free Zn(2+), i.e., not complexed to dissolved ligands. At these relatively high concentrations, NPs with an aliphatic polyether-coating show slower dissolution (i.e., slower free Zn(2+) release) and reprecipitation kinetics compared to those of uncoated NPs, requiring more than 48 h to reach thermodynamic equilibrium. Cytotoxicity (MTT) and DNA damage (Comet) assay dose-response curves for three epithelial cell lines suggest that dissolution and reprecipitation dominate for uncoated ZnO NPs. Transmission electron microscopy combined with the monitoring of intracellular Zn(2+) concentrations and ZnO-NP interactions with model lipid membranes indicate that an aliphatic polyether coat on ZnO NPs increases cellular uptake, enhancing toxicity by enabling intracellular dissolution and release of Zn(2+). Similarly, we demonstrate that needle-like NP morphologies enhance toxicity by apparently frustrating cellular uptake. To limit toxicity, ZnO NPs with nonacicular morphologies and coatings that only weakly interact with cellular membranes are recommended