28 research outputs found

    Correlation of in Vitro Cytokine Responses with the Chemical Composition of Soil-Derived Particulate Matter

    Get PDF
    We treated human lung epithelial cells, type BEAS-2B, with 10–80 ÎŒg/cm(2) of dust from soils and road surfaces in the western United States that contained particulate matter (PM) < 2.5 ÎŒm aerodynamic diameter. Cell viability and cytokine secretion responses were measured at 24 hr. Each dust sample is a complex mixture containing particles from different minerals mixed with biogenic and anthropogenic materials. We determined the particle chemical composition using methods based on the U.S. Environmental Protection Agency Speciation Trends Network (STN) and the National Park Service Interagency Monitoring of Protected Visual Environments (IMPROVE) network. The functionally defined carbon fractions reported by the ambient monitoring networks have not been widely used for toxicology studies. The soil-derived PM(2.5) from different sites showed a wide range of potency for inducing the release of the proinflammatory cytokines interleukin-6 (IL-6) and IL-8 in vitro. Univariate regression and multivariate redundancy analysis were used to test for correlation of viability and cytokine release with the concentrations of 40 elements, 7 ions, and 8 carbon fractions. The particles showed positive correlation between IL-6 release and the elemental and pyrolyzable carbon fractions, and the strongest correlation involving crustal elements was between IL-6 release and the aluminum:silicon ratio. The observed correlations between low-volatility organic components of soil- and road-derived dusts and the cytokine release by BEAS-2B cells are relevant for investigation of mechanisms linking specific air pollution particle types with the initiating events leading to airway inflammation in sensitive populations

    Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health

    Full text link

    Differential NF-&kappa;B and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells

    No full text
    Magne Refsnes, Tonje Skuland, Marit L&aring;g, Per E Schwarze, Johan &Oslash;vrevik Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway Abstract: Different toxic agents have a varying potential to induce the production of the proinflammatory chemokine, CXCL8 (interleukin [IL]-8), in lung cells. A critical question is which mechanisms determine the magnitude and persistence of the CXCL8 responses to different stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), and sodium fluoride (NaF) to induce CXCL8 responses in A549 cells, with emphasis on the importance of nuclear factor kappa B (NF-&kappa;B)- and mitogen-activated protein kinase (MAPK) signaling. Notably, TPA induced a greater release of CXCL8 than did NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger (m)RNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and a less marked and even more transient phosphorylation of c-jun-N-terminal kinases (JNK1/2) and p38. In contrast, NaF elicited a lower, but relatively sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-&kappa;B), whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to TPA. Furthermore, NF-&kappa;B activation appeared to be indispensable for CXCL8 induction. The early response, magnitude, and persistency of MAPK and NF-&kappa;B signaling seemed to be critical determinants for the potential to induce CXCL8. These findings underscore that a strong, rapid, and relatively transient activation of ERK1/2 in combination with NF-kB may be sufficient for a strong induction of CXCL8, which may exceed the effects of a more moderate ERK1/2 activation in combination with activation of p38, JNK1/2, and NF-&kappa;B. Keywords: TPA, sodium fluoride, CXCL8, MAPK, NF-&kappa;B, A549 cell
    corecore