23 research outputs found

    Variations in the Difference between Mean Sea Level measured either side of Cape Hatteras and Their Relation to the North Atlantic Oscillation

    Get PDF
    We consider the extent to which the difference in mean sea level (MSL) measured on the North American Atlantic coast either side of Cape Hatteras varies as a consequence of dynamical changes in the ocean caused by fluctuations in the North Atlantic Oscillation (NAO). From analysis of tide gauge data, we know that changes in MSL-difference and NAO index are correlated on decadal to century timescales enabling a scale factor of MSL-difference change per unit change in NAO index to be estimated. Changes in trend in the NAO index have been small during the past few centuries (when measured using windows of order 60–120 years). Therefore, if the same scale factor applies through this period of time, the corresponding changes in trend in MSL-difference for the past few centuries should also have been small. It is suggested thereby that the sea level records for recent centuries obtained from salt marshes (adjusted for long-term vertical land movements) should have essentially the same NAO-driven trends south and north of Cape Hatteras, only differing due to contributions from other processes such as changes in the Meridional Overturning Circulation or ‘geophysical fingerprints’. The salt marsh data evidently support this interpretation within their uncertainties for the past few centuries, and perhaps even for the past millennium. Recommendations are made on how greater insight might be obtained by acquiring more measurements and by improved modelling of the sea level response to wind along the shelf

    Endogenous (In)Formal Institutions.

    Get PDF
    Despite the huge evidence documenting the relevance of inclusive political institutions and a culture of cooperation, we still lack a framework that identifies their origins and interaction. In a model in which an elite and a citizenry try to cooperate in consumption risk-sharing and investment, we show that a rise in the investment value encourages the elite to introduce more inclusive political institutions to convince the citizenry that a sufficient part of the returns on joint investments will be shared. In addition, accumulation of culture rises with the severity of consumption risk if this is not too large and thus cheating is not too appealing. Finally, the citizenry may over-accumulate culture to credibly commit to cooperate in investment when its value falls and so inclusive political institutions are at risk. These predictions are consistent with the evolution of activity-specific geographic factors, monasticism, and political institutions in a panel of 90 European regions spanning the 1000-1600 period. Evidence from several identification strategies suggests that the relationships we uncover are causal

    Mixed layer depth (MLD) variability in the southern Bay of Biscay. Deepening of winter MLDs concurrent with generalized upper water warming trends

    No full text
    Mixed layer depth (MLD) variability from seasonal to decadal time scales in the Bay of Biscay is studied in this work. A hydrographic time series running since 1991 in the study area, a climatology of the upper layer vertical structure based on the topology of this temperature profile time series and a one-dimensional water column model have been used for this purpose. The prevailing factors driving MLD variability have been determined with detail, and agreement with observations is achieved. Tests carried out to investigate climatological profile skill to reproduce the upper layer temporal evolution have demonstrated its ability to simulate variability at seasonal time scales and reproduce the most conspicuous events observed. This has enabled us to carry out a reconstruction of the MLD variability for the last 60 years in the study area. Favourable sequence of intense mixing events explains interannual differences and cases of extraordinary deepening of winter mixed layer. The negative phase of the Eastern Atlantic pattern seems to determine important interannual variability through intense episodes of cooling and mixing as in winter 2005 in the Bay of Biscay. Low-frequency variability is also observed. A very striking and unexpected shallower winter MLD during the 1970s and 1980s than those observed from 1995 has been found. Simulation results support this counter-intuitive outcome of shallower winter mixed layers concurrent with generalized upper water warming trends reported on several occasions for the area. The long-term trends in MLD seem related with decadal variability in the North Atlantic Oscillation, being in phase and opposition with other deepening-shallowing cycles found from subtropical-to-subpolar areas in the North Atlantic.Publicado
    corecore