728 research outputs found

    Development of urban bird indicators using data from monitoring schemes in two large European cities

    Get PDF
    Bird monitoring projects have provided valuable data for developing biological indicators to evaluate the state of natural and agricultural habitats. However, fewer advances have been made in urban environments. In this study we used bird monitoring data from 2002 to 2012 in two cities with different climates (Brussels and Barcelona), to generate two multi–species urban indicators to evaluate temporal trends on abundance of urban avifauna. To do this we used two different conceptual approaches, one based on a list of widespread species in European cities (WSEC) and another based exclusively on species widespread at city level (WCS) regardless of the birds occurring in other cities. The two indicators gave a similar general pattern, although we found a 3% difference in the mean annual change in both cities, thus suggesting that the values provided by urban indicators may differ depending on the conceptual approach and, hence, by the species list used to generate them. However, both indicators may have their own value and could be treated as complementary indices

    Drag in paired electron-hole layers

    Get PDF
    We investigate transresistance effects in electron-hole double layer systems with an excitonic condensate. Our theory is based on the use of a minimum dissipation premise to fix the current carried by the condensate. We find that the drag resistance jumps discontinuously at the condensation temperature and diverges as the temperature approaches zero.Comment: 12 pages, 1 Figure, .eps file attache

    HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells

    Get PDF
    The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor κB pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds

    Spin polarization and magneto-luminescence of confined electron-hole systems

    Get PDF
    A BCS-like variational wave-function, which is exact in the infinite field limit, is used to study the interplay among Zeeman energies, lateral confinement and particle correlations induced by the Coulomb interactions in strongly pumped neutral quantum dots. Band mixing effects are partially incorporated by means of field-dependent masses and g-factors. The spin polarization and the magneto-luminescence are computed as functions of the number of electron-hole pairs present in the dot and the applied magnetic field.Comment: To appear in Phys. Rev.

    Status of the light ion source developments at CEA/Saclay

    Get PDF
    ACC NIMInternational audienceSILHI (High Intensity Light Ion Source) is an ECR ion source producing high intensity proton ordeuteron beams at 95 keV. It is now installed in the IPHI site building, on the CEA/Saclay center. IPHI is a frontend demonstrator of high power accelerator. The source regularly delivers more than 130 mA protons in CWmode and already produced more than 170 mA deuterons in pulsed mode at nominal energy. The last beamcharacterisations, including emittance measurements, space charge compensation analysis and diagnosticimprovements, will be reported. Taking into account the SILHI experience, new developments are in progress tobuild and test a 5 mA deuteron source working in CW mode. This new source will also operate at 2.45 GHz andpermanent magnets will provide the magnetic configuration. This source, of which the design will be discussed,will have to fit in with the SPIRAL 2 accelerator developed at GANIL to produce Radioactive Ion Beams. TheH- test stand status is briefly presented here and detailed in companion papers.This work is partly supported by the European Commission under contract n°: HPRI-CT-2001-50021

    Spontaneous Interlayer Coherence in Double-Layer Quantum Hall Systems: Symmetry Breaking Interactions, In-Plane Fields and Phase Solitons

    Full text link
    At strong magnetic fields double-layer two-dimensional-electron-gas systems can form an unusual broken symmetry state with spontaneous inter-layer phase coherence. The system can be mapped to an equivalent system of pseudospin 1/21/2 particles with pseudospin-dependent interactions and easy-plane magnetic order. In this paper we discuss how the presence of a weak interlayer tunneling term alters the properties of double-layer systems when the broken symmetry is present. We use the energy functional and equations of motion derived earlier to evaluate the zero-temperature response functions of the double-layer system and use our results to discuss analogies between this system and Josephson-coupled superconducting films. We also present a qualitative picture of the low-energy charged excitations of this system. We show that parallel fields induce a highly collective phase transition to an incommensurate state with broken translational symmetry.Comment: 26 pages, RevTex, 8 postscript figures (submitted to Phys. Rev. B

    Microscopic Functional Integral Theory of Quantum Fluctuations in Double-Layer Quantum Hall Ferromagnets

    Full text link
    We present a microscopic theory of zero-temperature order parameter and pseudospin stiffness reduction due to quantum fluctuations in the ground state of double-layer quantum Hall ferromagnets. Collective excitations in this systems are properly described only when interactions in both direct and exchange particle-hole channels are included. We employ a functional integral approach which is able to account for both, and comment on its relation to diagrammatic perturbation theory. We also discuss its relation to Gaussian fluctuation approximations based on Hubbard-Stratonovich-transformation representations of interactions in ferromagnets and superconductors. We derive remarkably simple analytical expressions for the correlation energy, renormalized order parameter and renormalized pseudospin stiffness.Comment: 15 pages, 5 figure
    corecore