1,888 research outputs found

    Exact calculation of thermodynamical quantities of the integrable t-J model

    Full text link
    The specific heat and the compressibility for the integrable t-J model are calculated showing Luttinger liquid behavior for low temperatures. A Trotter-Suzuki mapping and the quantum transfer matrix approach are utilized. Using an algebraic Bethe ansatz this method permits the exact calculation of the free energy and related quantities. A set of just two non-linear integral equations determining these quantities is studied for various particle densities and temperatures. The structure of the specific heat is discussed in terms of the elementary charge as well as spin excitations.Comment: 4 pages, 5 Postscript figures, uses epsf.sty and revtex, tar'ed, gzip'ed and uuencode

    On the efficiency of stochastic volume sources for the determination of light meson masses

    Full text link
    We investigate the efficiency of single timeslice stochastic sources for the calculation of light meson masses on the lattice as one varies the quark mass. Simulations are carried out with Nf = 2 flavours of non-perturbatively O(a) improved Wilson fermions for pion masses in the range of 450 - 760 MeV. Results for pseudoscalar and vector meson two-point correlation functions computed using stochastic as well as point sources are presented and compared. At fixed computational cost the stochastic approach reduces the variance considerably in the pseudoscalar channel for all simulated quark masses. The vector channel is more affected by the intrinsic stochastic noise. In order to obtain stable estimates of the statistical errors and a more pronounced plateau for the effective vector meson mass, a relatively large number of stochastic sources must be used.Comment: 18 pages, 6 figure

    Excited state TBA and functional relations in spinless Fermion model

    Full text link
    The excited state thermodynamic Bethe ansatz (TBA) equations for the spinless Fermion model are presented by the quantum transfer matrix (QTM) approach. We introduce a more general family called T-functions and explore functional relations among them (T-system) and their certain combinations (Y-system). {}From their analytical property, we derive a closed set of non-linear integral equations which characterize the correlation length of at any finite temperatures. Solving these equations numerically, we explicitly determine the correlation length, which coincides with earlier results with high accuracy.Comment: 4 page

    Global Wilson-Fisher fixed points

    Full text link
    The Wilson-Fisher fixed point with O(N)O(N) universality in three dimensions is studied using the renormalisation group. It is shown how a combination of analytical and numerical techniques determine global fixed point solutions to leading order in the derivative expansion for real or purely imaginary fields with moderate numerical effort. Universal and non-universal quantitites such as scaling exponents and mass ratios are computed, for all NN, together with local fixed point coordinates, radii of convergence, and parameters which control the asymptotic behaviour of the effective action. We also explain when and why finite-NN results do not converge pointwise towards the exact infinite-NN limit. In the regime of purely imaginary fields, a new link between singularities of fixed point effective actions and singularities of their counterparts by Polchinski are established. Implications for other theories are indicated.Comment: 28 pages, 10 figures, v2: explanations and refs added, to appear (NPB

    Evidence that Polyunsaturated Aldehydes of Diatoms are Repellents for Pelagic Crustacean Grazers

    Get PDF
    Evidence is given that odour compounds of diatoms serve as potential repellents for crustacean grazers. Novel repellent-test and odour-test apparatus allowed the determination of repellent activity of diatom derived compounds, activated by freezing and thawing or mechanical disintegration, and pure compounds, respectively. Epilithic diatom biofilms when activated, produced odour compounds that were determined by GC-MS to be polyunsaturated aldehydes (PUA). 2(E),4(Z),7(Z)-Decatrienal and 2(E),4(Z)-octadienal were the major compounds, and 2(E),4(Z)-heptadienal was a minor compound. These PUA were each accompanied by small amounts of the E,E-isomers in positions 2 and 4. 2(E),4(E),7(Z)-Decatrienal was the most active repellent tested and exhibited a RC50 value (indicating the concentration of a compound necessary for a 50% reduction of swimming crustaceans in the assay vial) of 3.5μM in a defined water column. Quantitative analyses showed that upon activation diatom biofilms produced large amounts of eicosapentaenoic acid (EPA) of which only a minor part was degraded to PUA. The major part of EPA was retained in the cells whilst the major part of PUA was released into the surrounding water. The data are consistent with the hypothesis that diatoms damaged by grazers develop free EPA in the cells that is toxic to grazers, and release PUA into the water that serve as warning signals to grazers. Diatoms and other phytoplankton species, that have the capacity to form these compounds, might benefit from such a reaction because the producers live in colonies or assemblages and the death of one cell liberates a cloud of repellent compounds into the water which reduces the grazing pressure on the remaining cells. Such activated defence reactions may help explain food selection and avoidance in freshwater and marine ecosystem

    Lattice calculations of the leading hadronic contribution to (g-2)_mu

    Full text link
    We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacuum polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g-2)_mu. We also extended the range of ensembles to include a pion mass below 200 MeV which allows us to check the non-trivial chiral behaviour of a_mu^HLO.Comment: 7 pages, 3 figures, 1 table, talk presented at the 30th International Symposium on Lattice Field Theory (Lattice2012), Cairns, Australi

    Hadronic form factors for rare semileptonic BB decays

    Full text link
    We discuss first results for the computation of short distance contributions to semileptonic form factors for the rare BB decays BK+B \to K^{*} \ell^+\ell^- and Bsϕ+B_s \to \phi \ell^+ \ell^-. Our simulations are based on RBC/UKQCD's Nf=2+1N_f=2+1 ensembles with domain wall light quarks and the Iwasaki gauge action. For the valence bb-quark we chose the relativistic heavy quark action.Comment: 7 pages, 1 table, 3 figures, presented at the 33rd International Symposium on Lattice Field Theory (Lattice2015), July 14-18, 2015, Kobe, Japa

    Generalization of form in visual pattern classification.

    Get PDF
    Human observers were trained to criterion in classifying compound Gabor signals with sym- metry relationships, and were then tested with each of 18 blob-only versions of the learning set. General- ization to dark-only and light-only blob versions of the learning signals, as well as to dark-and-light blob versions was found to be excellent, thus implying virtually perfect generalization of the ability to classify mirror-image signals. The hypothesis that the learning signals are internally represented in terms of a 'blob code' with explicit labelling of contrast polarities was tested by predicting observed generalization behaviour in terms of various types of signal representations (pixelwise, Laplacian pyramid, curvature pyramid, ON/OFF, local maxima of Laplacian and curvature operators) and a minimum-distance rule. Most representations could explain generalization for dark-only and light-only blob patterns but not for the high-thresholded versions thereof. This led to the proposal of a structure-oriented blob-code. Whether such a code could be used in conjunction with simple classifiers or should be transformed into a propo- sitional scheme of representation operated upon by a rule-based classification process remains an open question

    Theoretical aspects of quantum electrodynamics in a finite volume with periodic boundary conditions

    Full text link
    First-principles studies of strongly-interacting hadronic systems using lattice quantum chromodynamics (QCD) have been complemented in recent years with the inclusion of quantum electrodynamics (QED). The aim is to confront experimental results with more precise theoretical determinations, e.g. for the anomalous magnetic moment of the muon and the CP-violating parameters in the decay of mesons. Quantifying the effects arising from enclosing QED in a finite volume remains a primary target of investigations. To this end, finite-volume corrections to hadron masses in the presence of QED have been carefully studied in recent years. This paper extends such studies to the self-energy of moving charged hadrons, both on and away from their mass shell. In particular, we present analytical results for leading finite-volume corrections to the self-energy of spin-0 and spin-12\frac{1}{2} particles in the presence of QED on a periodic hypercubic lattice, once the spatial zero mode of the photon is removed, a framework that is called QEDL\mathrm{QED}_{\mathrm{L}}. By altering modes beyond the zero mode, an improvement scheme is introduced to eliminate the leading finite-volume corrections to masses, with potential applications to other hadronic quantities. Our analytical results are verified by a dedicated numerical study of a lattice scalar field theory coupled to QEDL\mathrm{QED}_{\mathrm{L}}. Further, this paper offers new perspectives on the subtleties involved in applying low-energy effective field theories in the presence of QEDL\mathrm{QED}_{\mathrm{L}}, a theory that is rendered non-local with the exclusion of the spatial zero mode of the photon, clarifying recent discussions on this matter.Comment: 57 pages, 10 figures, version accepted for publication in Phys. Rev.
    corecore