69 research outputs found

    Does the circulating ketoconazole metabolite N-deacetyl ketoconazole contribute to the drug-drug interaction potential of the parent compound?

    Get PDF
    Ketoconazole is a strong inhibitor of cytochrome P450 3A4 (CYP3A4) and of P-glycoprotein (P-gp) and is often used as an index inhibitor especially for CYP3A4-mediated drug metabolism. A preliminary physiologically based pharmacokinetic (PBPK) model for drug-drug interactions indicated possible involvement of a metabolite to the perpetrator potential of ketoconazole. Still unknown for humans, in rodents, N-deacetyl ketoconazole (DAK) has been identified as the major ketoconazole metabolite. We therefore investigated in vitro, whether DAK also inhibits the human CYPs and drug transporters targeted by ketoconazole and quantified DAK in human plasma from healthy volunteers after receiving a single oral dose of 400 mg ketoconazole. Our data demonstrated that DAK also inhibits CYP3A4 (2.4-fold less potent than ketoconazole), CYP2D6 (13-fold more potent than ketoconazole), CYP2C19 (equally potent), P-gp (3.4-fold less potent than ketoconazole), breast cancer resistance protein (more potent than ketoconazole) and organic anion transporting polypeptide 1B1 and 1B3 (7.8-fold and 2.6-fold less potent than ketoconazole). After a single oral dose of 400 mg ketoconazole, maximum concentrations of DAK in human plasma were only 3.1 ‰ of the parent compound. However, assuming that DAK also highly accumulates in the human liver as demonstrated for rodents, inhibition of the proteins investigated could also be conceivable in vivo. In conclusion, DAK inhibits several CYPs and drug transporters, which might contribute to the perpetrator potential of ketoconazole

    Quantification of the Time Course of CYP3A Inhibition, Activation, and Induction Using a Population Pharmacokinetic Model of Microdosed Midazolam Continuous Infusion

    Get PDF
    Background Cytochrome P450 (CYP) 3A contributes to the metabolism of many approved drugs. CYP3A perpetrator drugs can profoundly alter the exposure of CYP3A substrates. However, effects of such drug-drug interactions are usually reported as maximum effects rather than studied as time-dependent processes. Identification of the time course of CYP3A modulation can provide insight into when significant changes to CYP3A activity occurs, help better design drug-drug interaction studies, and manage drug-drug interactions in clinical practice. Objective We aimed to quantify the time course and extent of the in vivo modulation of different CYP3A perpetrator drugs on hepatic CYP3A activity and distinguish different modulatory mechanisms by their time of onset, using pharmacologically inactive intravenous microgram doses of the CYP3A-specific substrate midazolam, as a marker of CYP3A activity. Methods Twenty-four healthy individuals received an intravenous midazolam bolus followed by a continuous infusion for 10 or 36 h. Individuals were randomized into four arms: within each arm, two individuals served as a placebo control and, 2 h after start of the midazolam infusion, four individuals received the CYP3A perpetrator drug: voriconazole (inhibitor, orally or intravenously), rifampicin (inducer, orally), or efavirenz (activator, orally). After midazolam bolus administration, blood samples were taken every hour (rifampicin arm) or every 15 min (remaining study arms) until the end of midazolam infusion. A total of 1858 concentrations were equally divided between midazolam and its metabolite, 1’-hydroxymidazolam. A nonlinear mixed-effects population pharmacokinetic model of both compounds was developed using NONMEM®. CYP3A activity modulation was quantified over time, as the relative change of midazolam clearance encountered by the perpetrator drug, compared to the corresponding clearance value in the placebo arm. Results Time course of CYP3A modulation and magnitude of maximum effect were identified for each perpetrator drug. While efavirenz CYP3A activation was relatively fast and short, reaching a maximum after approximately 2–3 h, the induction effect of rifampicin could only be observed after 22 h, with a maximum after approximately 28–30 h followed by a steep drop to almost baseline within 1–2 h. In contrast, the inhibitory impact of both oral and intravenous voriconazole was prolonged with a steady inhibition of CYP3A activity followed by a gradual increase in the inhibitory effect until the end of sampling at 8 h. Relative maximum clearance changes were +59.1%, +46.7%, −70.6%, and −61.1% for efavirenz, rifampicin, oral voriconazole, and intravenous voriconazole, respectively. Conclusions We could distinguish between different mechanisms of CYP3A modulation by the time of onset. Identification of the time at which clearance significantly changes, per perpetrator drug, can guide the design of an optimal sampling schedule for future drug-drug interaction studies. The impact of a short-term combination of different perpetrator drugs on the paradigm CYP3A substrate midazolam was characterized and can define combination intervals in which no relevant interaction is to be expected. Clinical Trial Registration The trial was registered at the European Union Drug Regulating Authorities for Clinical Trials (EudraCT-No. 2013-004869-14)

    Accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium in critically ill patients treated with intravenous voriconazole under renal replacement therapy

    Get PDF
    BACKGROUND: Voriconazole was introduced for the treatment of life-threatening fungal infections. The intravenous form includes the solvent vehicle sulphobutylether beta cyclodextrin sodium which shows an impaired clearance under intermittent dialysis therapy. This investigation aimed to determine first clinical data on sulphobutylether beta cyclodextrin sodium blood levels to verify the risk for accumulation. METHODS: In four patients suffering from renal insufficiency and intermittent dialysis therapy who needed a treatment with intravenous voriconazole as a reserve antifungal at the intensive care unit of the Mainz University Hospital the trough levels of voriconazole and sulphobutylether beta cyclodextrin sodium were measured. RESULTS: A 75-year-old woman showed a maximal sulphobutylether beta cyclodextrin sodium plasma level of 145 μg/ml in the initial phase. After a few days renal function recovered and the plasma levels came down to less than 20 μg/ml. In contrast to this patient with a recovery of renal function the remaining three patients showed renal failure during the complete period of intravenous treatment with voriconazole. In these patients an accumulation of sulphobutylether beta cyclodextrin sodium plasma levels was determined with a maximum of 523 μg/ml in a 18-year-old man, 409 μg/ml in a 57-year-old man, and 581 μg/ml in a 47-year-old man. CONCLUSION: The present data indicate an accumulation of sulphobutylether beta cyclodextrin sodium in patients treated with intravenous voriconazole and dialysis therapy. Fortunately, no toxic effects were observed, although the accumulated dose values were lower but comparable with those used in previous toxicity studies with animals

    Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    Get PDF
    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents

    Safety of the methylene blue plus chloroquine combination in the treatment of uncomplicated falciparum malaria in young children of Burkina Faso [ISRCTN27290841]

    Get PDF
    BACKGROUND: Safe, effective and affordable drug combinations against falciparum malaria are urgently needed for the poor populations in malaria endemic countries. Methylene blue (MB) combined with chloroquine (CQ) has been considered as one promising new regimen. OBJECTIVES: The primary objective of this study was to evaluate the safety of CQ-MB in African children with uncomplicated falciparum malaria. Secondary objectives were to assess the efficacy and the acceptance of CQ-MB in a rural population of West Africa. METHODS: In this hospital-based randomized controlled trial, 226 children (6–59 months) with uncomplicated falciparum malaria were treated in Burkina Faso. The children were 4:1 randomized to CQ-MB (n = 181; 25 mg/kg CQ and 12 mg/kg MB over three days) or CQ (n = 45; 25 mg/kg over three days) respectively. The primary outcome was the incidence of severe haemolysis or other serious adverse events (SAEs). Efficacy outcomes were defined according to the WHO 2003 classification system. Patients were hospitalized for four days and followed up until day 14. RESULTS: No differences in the incidence of SAEs and other adverse events were observed between children treated with CQ-MB (including 24 cases of G6PD deficiency) compared to children treated with CQ. There was no case of severe haemolysis and also no significant difference in mean haemoglobin between study groups. Treatment failure rates were 53.7% (95% CI [37.4%; 69.3%]) in the CQ group compared to 44.0% (95% CI [36.3%; 51.9%]) in the CQ-MB group. CONCLUSION: MB is safe for the treatment of uncomplicated falciparum malaria, even in G6PD deficient African children. However, the efficacy of the CQ-MB combination has not been sufficient at the MB dose used in this study. Future studies need to assess the efficacy of MB at higher doses and in combination with appropriate partner drugs

    Evaluation of the drug-drug interaction potential of the novel hepatitis B and D virus entry inhibitor bulevirtide at OATP1B in healthy volunteers

    Get PDF
    Introduction: Bulevirtide is a first-in-class antiviral drug to treat chronic hepatitis B/D. We investigated the drug-drug interaction potential and pharmacokinetics of high-dose subcutaneous bulevirtide (5 mg twice daily) with organic anion transporting polypeptide 1B1 (OATP1B1) and cytochrome P450 (CYP) 3A4.Methods: This was a single-center, open-label, fixed-sequence drug-drug interaction trial in 19 healthy volunteers. Before and at bulevirtide steady state, participants ingested a single 40 mg dose of pravastatin. A midazolam microdose was applied to quantify CYP3A4 activity.Results: At bulevirtide steady state, pravastatin area under the concentration-time curve (AUC0–∞) increased 1.32-fold (90% CI 1.08-1.61). The 5 mg bulevirtide twice-daily treatment resulted in a mean AUC0-12 of 1210 h*ng/ml (95% CI 1040-1408) and remained essentially unchanged under the influence of pravastatin. CYP3A4 activity did not change to a clinically relevant extent. As expected, total bile acids increased substantially (35-fold) compared to baseline during bulevirtide treatment. All study medication was well tolerated.Discussion: The study demonstrated that high-dose bulevirtide inhibited OATP1B-mediated hepatic uptake of the marker substrate pravastatin but the extent is considered clinically not relevant. Changes in CYP3A4 activity were also not clinically relevant. In conclusion, this study suggests that OATP1B substrate drugs as well as CYP3A4 substrates may safely be used without dose adjustment in patients treated with bulevirtide. However, in patients using high statin doses and where concomitant factors potentially further increase statin exposure, caution may be required when using bulevirtide

    Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections

    Get PDF
    Desorption/ionization (DI)-mass spectrometric (MS) methods offer considerable advantages of rapidity and low-sample input for the analysis of solid biological matrices such as tissue sections. The concept of desorption electrospray ionization (DESI) offers the possibility to ionize compounds from solid surfaces at atmospheric pressure, without the addition of organic compounds to initiate desorption. However, severe drawbacks from former DESI hardware stability made the development of assays for drug quantification difficult. In the present study, the potential of new prototype source setups (High Performance DESI Sprayer and Heated Transfer Line) for the development of drug quantification assays in tissue sections was evaluated. It was demonstrated that following dedicated optimization, new DESI XS enhancements present promising options regarding targeted quantitative analyses. As a model compound for these developments, ulixertinib, an inhibitor of extracellular signal-regulated kinase (ERK) 1 and 2 was used

    Protocol of the IntenSify-Trial:An open-label phase I trial of the CYP3A inhibitor cobicistat and the cytostatics gemcitabine and nab-paclitaxel in patients with advanced stage or metastatic pancreatic ductal adenocarcinoma to evaluate the combination's pharmacokinetics, safety, and efficacy

    Get PDF
    Expression of CYP3A5 protein is a basal and acquired resistance mechanism of pancreatic ductal adenocarcinoma cells conferring protection against the CYP3A and CYP2C8 substrate paclitaxel through metabolic degradation. Inhibition of CYP3A isozymes restores the cells sensitivity to paclitaxel. The combination of gemcitabine and nab-paclitaxel is an established regimen for the treatment of metastasized or locally advanced inoperable pancreatic cancer. Cobicistat is a CYP3A inhibitor developed for the pharmacoenhancement of protease inhibitors. The addition of cobicistat to gemcitabine and nab-paclitaxel may increase the antitumor effect. We will conduct a phase I dose escalation trial with a classical 3 + 3 design to investigate the safety, tolerability, and pharmacokinetics (PKs) of gemcitabine, nab-paclitaxel, and cobicistat. Although the doses of gemcitabine (1000 mg/m2) and cobicistat (150 mg) are fixed, three dose levels of nab-paclitaxel (75, 100, and 125 mg/m2) will be explored to account for a potential PK drug interaction. After the dose escalation phase, we will set the recommended dose for expansion (RDE) and treat up to nine patients in an expansion part of the trial. The trial is registered under the following identifiers EudraCT-Nr. 2019-001439-29, drks.de: DRKS00029409, and ct.gov: NCT05494866. Overcoming resistance to paclitaxel by CYP3A5 inhibition may lead to an increased efficacy of the gemcitabine and nab-paclitaxel regimen. Safety, efficacy, PK, and RDE data need to be acquired before investigating this combination in a large-scale clinical study.</p
    • …
    corecore