121 research outputs found

    Phosphate and FGF-23

    Get PDF
    Fibroblast growth factor (FGF)-23 is probably the most important regulator of serum phosphate and calcitriol (1,25(OH)2D3) levels. It is secreted by osteocytes and osteoblasts in response to oral phosphate loading or increased serum 1,25(OH)2D3 levels. In human chronic kidney disease (CKD), plasma FGF-23 appears to be a sensitive biomarker of abnormal renal phosphate handling, as FGF-23 levels increase during early stages of kidney malfunction. In humans and animals with CKD, elevated FGF-23 levels increase fractional phosphate excretion, reduce serum phosphate levels, and reduce 1α-hydroxylase activity, which reduces 1,25(OH)2D3 formation thereby increasing parathyroid hormone (PTH) secretion. FGF-23 thus has a key adaptive role in maintaining normophosphatemia. Plasma FGF-23 continues to increase as CKD progresses, increasing by orders of magnitude in end-stage renal disease. At the same time, responsiveness to FGF-23 declines as the number of intact nephrons declines, which is associated with reduced expression of Klotho, the co-receptor required for FGF-23 signaling. In late CKD, FGF-23 cannot reduce serum phosphate levels, and abnormally high plasma FGF-23 concentrations appear to exert unwarranted off-target effects, including left ventricular hypertrophy, faster CKD progression, and premature mortality. Lowering serum phosphate levels through the use of oral phosphate binders and/or long-acting PTH agents may reduce FGF-23 levels in early CKD stages, thereby limiting off-target effects, which may improve patient outcomes

    Ollier disease

    Get PDF
    Enchondromas are common intraosseous, usually benign cartilaginous tumors, that develop in close proximity to growth plate cartilage. When multiple enchondromas are present, the condition is called enchondromatosis also known as Ollier disease (WHO terminology). The estimated prevalence of Ollier disease is 1/100,000. Clinical manifestations often appear in the first decade of life. Ollier disease is characterized by an asymmetric distribution of cartilage lesions and these can be extremely variable (in terms of size, number, location, evolution of enchondromas, age of onset and of diagnosis, requirement for surgery). Clinical problems caused by enchondromas include skeletal deformities, limb-length discrepancy, and the potential risk for malignant change to chondrosarcoma. The condition in which multiple enchondromatosis is associated with soft tissue hemangiomas is known as Maffucci syndrome. Until now both Ollier disease and Maffucci syndrome have only occurred in isolated patients and not familial. It remains uncertain whether the disorder is caused by a single gene defect or by combinations of (germ-line and/or somatic) mutations. The diagnosis is based on clinical and conventional radiological evaluations. Histological analysis has a limited role and is mainly used if malignancy is suspected. There is no medical treatment for enchondromatosis. Surgery is indicated in case of complications (pathological fractures, growth defect, malignant transformation). The prognosis for Ollier disease is difficult to assess. As is generally the case, forms with an early onset appear more severe. Enchondromas in Ollier disease present a risk of malignant transformation of enchondromas into chondrosarcomas

    GNAS, PDE4D, and PRKAR1A Mutations and GNAS Methylation Changes Are Not a Common Cause of Isolated Early-Onset Severe Obesity Among Finnish Children

    Get PDF
    Context: Pseudohypoparathyroidism type Ia (PHP1A) is caused by inactivating mutations involving GNAS exons 1–13, encoding the alpha-subunit of the stimulatory G protein (Gsα). Particularly PHP1A, but also other disorders involving the Gsα-cAMP-signaling pathway, have been associated with early-onset obesity. Thus, patients with mutations in the genes encoding PDE4D and PRKAR1A can also be obese. Furthermore, epigenetic GNAS changes, as in pseudohypoparathyroidism type Ib (PHP1B), can lead to excessive weight.Objective: Search for genetic variants in GNAS, PDE4D, and PRKAR1A and for methylation alterations at the GNAS locus in Finnish subjects with isolated severe obesity before age 10 years.Methods: Next generation sequencing to identify pathogenic variants in the coding exons of GNAS, PDE4D, and PRKAR1A; Multiplex Ligation-dependent Probe Amplification (MLPA) and methylation-sensitive MLPA (MS-MLPA) to search for deletions in GNAS and STX16, and for epigenetic changes at the four differentially methylated regions (DMR) within GNAS.Results: Among the 88 subjects (median age 13.8 years, median body mass index Z-score +3.9), we identified one rare heterozygous missense variant of uncertain significance in the XL exon of GNAS in a single patient. We did not identify clearly pathogenic variants in PDE4D and PRKAR1A, and no GNAS methylation changes were detected by MS-MLPA.Conclusions: Our results suggest that coding GNAS mutations or methylation changes at the GNAS DMRs, or coding mutations in PDE4D and PRKAR1A are not common causes of isolated childhood obesity in Finland.Peer reviewe

    Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD

    Get PDF
    Diminished linear growth during intermittent calcitriol therapy in children undergoing CCPD. Daily calcitriol therapy has been reported to improve linear growth in children with renal bone disease, and 1,25-dihydroxyvitamin D is a key regulator of chondrocyte proliferation and differentiation. Whereas large intermittent doses of calcitriol can lower serum parathyroid hormone (PTH) levels and reverse the skeletal changes of secondary hyperparathyroidism, the impact of intermittent calcitriol therapy on linear growth in children is not known. Thus, we studied 16 pre-pubertal patients with bone biopsy-proven secondary hyperparathyroidism who completed a 12-month prospective clinical trial of intermittent calcitriol therapy. Biochemical results and growth data obtained during intermittent calcitriol therapy were compared to values determined during the preceding 12 months of daily calcitriol therapy in each study subject; changes in bone histology were assessed after one year of intermittent calcitriol therapy. Z-scores for height did not change during 12 months of daily calcitriol therapy. Although the skeletal lesions of secondary hyperparathyroidism improved in most patients, Z-scores for height decreased from -1.8 ± 0.32 to -2.0 ± 0.33, P < 0.01, during intermittent calcitriol therapy. The largest reductions were seen in patients who developed adynamic bone lesions after 12 months of treatment. Delta Z-scores for height correlated with serum PTH, r = 0.71, P < 0.01, and alkaline phosphatase levels, r = 0.67, P < 0.01, during intermittent calcitriol therapy but not during daily calcitriol therapy. The data suggest that high dose intermittent calcitriol therapy adversely affects linear growth, particularly in patients with the adynamic lesion. The higher doses of calcitriol or the intermittent schedule of calcitriol administration may directly inhibit chondrocyte activity within growth plate cartilage of children with end-stage renal disease

    An Inverse Agonist Ligand of the PTH Receptor Partially Rescues Skeletal Defects in a Mouse Model of Jansen’s Metaphyseal Chondrodysplasia

    Full text link
    Jansen’s metaphyseal chondrodysplasia (JMC) is a rare disease of bone and mineral ion physiology that is caused by activating mutations in PTHR1. Ligand‐independent signaling by the mutant receptors in cells of bone and kidney results in abnormal skeletal growth, excessive bone turnover, and chronic hypercalcemia and hyperphosphaturia. Clinical features further include short stature, limb deformities, nephrocalcinosis, and progressive losses in kidney function. There is no effective treatment option available for JMC. In previous cell‐based assays, we found that certain N‐terminally truncated PTH and PTHrP antagonist peptides function as inverse agonists and thus can reduce the high rates of basal cAMP signaling exhibited by the mutant PTHR1s of JMC in vitro. Here we explored whether one such inverse agonist ligand, [Leu11,dTrp12,Trp23,Tyr36]‐PTHrP(7‐36)NH2 (IA), can be effective in vivo and thus ameliorate the skeletal abnormalities that occur in transgenic mice expressing the PTHR1‐H223R allele of JMC in osteoblastic cells via the collagen‐1α1 promoter (C1HR mice). We observed that after 2 weeks of twice‐daily injection and relative to vehicle controls, the IA analog resulted in significant improvements in key skeletal parameters that characterize the C1HR mice, because it reduced the excess trabecular bone mass, bone marrow fibrosis, and levels of bone turnover markers in blood and urine. The overall findings provide proof‐of‐concept support for the notion that inverse agonist ligands targeted to the mutant PTHR1 variants of JMC can have efficacy in vivo. Further studies of such PTHR1 ligand analogs could help open paths toward the first treatment option for this debilitating skeletal disorder. © 2019 American Society for Bone and Mineral Research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154322/1/jbmr3913-sup-0001-Supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154322/2/jbmr3913.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154322/3/jbmr3913_am.pd

    TSH elevations as the first laboratory evidence for pseudohypoparathyroidism type Ib (PHP-Ib).

    Get PDF
    Hypocalcemia and hyperphosphatemia because of resistance toward parathyroid hormone (PTH) in the proximal renal tubules are the most prominent abnormalities in patients affected by pseudohypoparathyroidism type Ib (PHP-Ib). In this rare disorder, which is caused by GNAS methylation changes, resistance can occur toward other hormones, such as thyroid-stimulating hormone (TSH), that mediate their actions through G protein-coupled receptors. However, these additional laboratory abnormalities are usually not recognized until PTH-resistant hypocalcemia becomes clinically apparent. We now describe four pediatric patients, first diagnosed with subclinical or overt hypothyroidism between the ages of 0.2 and 15 years, who developed overt PTH-resistance 3 to 20 years later. Although anti-thyroperoxidase (anti-TPO) antibodies provided a plausible explanation for hypothyroidism in one of these patients, this and two other patients revealed broad epigenetic GNAS abnormalities, which included loss of methylation (LOM) at exons AS, XL, and A/B, and gain of methylation at exon NESP55; ie, findings consistent with PHP-Ib. LOM at GNAS exon A/B alone led in the fourth patient to the identification of a maternally inherited 3-kb STX16 deletion, a well-established cause of autosomal dominant PHP-Ib. Although GNAS methylation changes were not detected in additional pediatric and adult patients with subclinical hypothyroidism (23 pediatric and 39 adult cases), hypothyroidism can obviously be the initial finding in PHP-Ib patients. One should therefore consider measuring PTH, along with calcium and phosphate, in patients with unexplained hypothyroidism for extended periods of time to avoid hypocalcemia and associated clinical complications

    Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers.

    Get PDF
    In vitro expansion of human primordial germ cell-like cells (hPGCLCs), a pluripotent stem cell-derived PGC model, has proved challenging due to rapid loss of primordial germ cell (PGC)-like identity and limited cell survival/proliferation. Here, we describe long-term culture hPGCLCs (LTC-hPGCLCs), which actively proliferate in a serum-free, feeder-free condition without apparent limit as highly homogeneous diploid cell populations maintaining transcriptomic and epigenomic characteristics of hPGCLCs. Histone proteomics confirmed reduced H3K9me2 and increased H3K27me3 marks in LTC-hPGCLCs compared with induced pluripotent stem cells (iPSCs). LTC-hPGCLCs established from multiple human iPSC clones of both sexes were telomerase positive, senescence-free cells readily passaged with minimal cell death or deviation from the PGC-like identity. LTC-hPGCLCs are capable of differentiating to DAZL-positive M-spermatogonia-like cells in the xenogeneic reconstituted testis (xrTestis) organ culture milieu as well as efficiently producing fully pluripotent embryonic germ cell-like cells in the presence of stem cell factor and fibroblast growth factor 2. Thus, LTC-hPGCLCs provide convenient access to unlimited amounts of high-quality and homogeneous hPGCLCs

    Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    Get PDF
    Amino-terminally truncated parathyroid hormone (PTH) fragments are detected to differing degrees by first- and second-generation immunometric PTH assays (PTH-IMAs), and acute changes in serum calcium affect the proportion of these fragments in circulation. However, the effect of chronic calcium changes and different vitamin D doses on these PTH measurements remains to be defined. In this study, 60 pediatric dialysis patients, aged 13.9 ± 0.7 years, with secondary hyperparathyroidism were randomized to 8 months of therapy with oral vitamin D combined with either calcium carbonate (CaCO3) or sevelamer. Serum phosphorus levels did not differ between groups. Serum calcium levels rose from 9.3 ± 0.1 to 9.7 ± 0.1 mg/dl during CaCO3 therapy (p < 0.01 from baseline) but remained unchanged during sevelamer therapy. In the CaCO3 and sevelamer groups, baseline serum PTH levels (1st PTH-IMA; Nichols Institute Diagnostics, San Clemente, CA) were 964 ± 75 and 932 ± 89 pg/ml, and levels declined to 491 ± 55 and 543 ± 59 pg/ml, respectively (nonsignificant between groups). Patients treated with sevelamer received higher doses of vitamin D than those treated with CaCO3. The PTH values obtained by first- and second-generation PTH-IMAs correlated closely throughout therapy and the response of PTH was similar to both PTH-IMAs, despite differences in serum calcium levels

    A new multi-system disorder caused by the Gαs mutation p.F376V

    Get PDF
    Context The alpha-subunit of the stimulatory G-protein (Gαs) links numerous receptors to adenylyl cyclase. Gαs, encoded by GNAS, is expressed predominantly from the maternal allele in certain tissues. Thus, maternal heterozygous loss-of-function mutations cause hormonal resistance, as in pseudohypoparathyroidism type Ia, while somatic gain-of-function mutations cause hormone-independent endocrine stimulation, as in McCune-Albright Syndrome. Objective We here report two unrelated boys presenting with a new combination of clinical findings that suggest both gain and loss of Gαs function. Design, Setting Clinical features were studied and sequencing of GNAS was performed. Signaling capacities of wild-type and mutant-Gαs were determined in the presence of different G protein-coupled receptors (GPCRs) under basal and agonist-stimulated conditions. Results Both unrelated patients presented with unexplained hyponatremia in infancy, followed by severe early-onset gonadotrophin-independent precocious puberty and skeletal abnormalities. An identical heterozygous de novo variant (c.1136T>G; p.F376V) was found on the maternal GNAS allele, in both patients; this resulted in a clinical phenotype that differ from known Gαs-related diseases and suggested gain-of-function at the receptors for vasopressin (V2R) and lutropin (LHCGR), yet increased serum parathyroid hormone (PTH) concentrations indicative of impaired proximal tubular PTH1 receptor (PTH1R) function. In vitro studies demonstrated that Gαs-F376V enhanced ligand-independent signaling at the PTH1R, LHCGR and V2R and, at the same time, blunted ligand-dependent responses. Structural homology modeling suggested mutation-induced modifications at the C-terminal α5-helix of Gαs that are relevant for interaction with GPCRs and signal transduction. Conclusions The Gαs p.F376V mutation causes a previously unrecognized multi-system disorder
    corecore