8,036 research outputs found

    Screening of organically based fungicides for apple scab (Venturia inaequalis) control and a histopathological study of the mode of action of a resistance inducer.

    Get PDF
    A range of possible substitutes for copper-based fungicides for control of apple scab (Venturia inaequalis) in organic growing were tested in laboratory and growth chamber experiments in the Danish project StopScab (2002-2004). Eighteen crude plant extracts, 19 commercial plant-based products and 6 miscellaneous compounds were tested for their ability to reduce scab symptoms on apple seedlings. Most of the compounds were also tested for their effect on conidium germination on glass slides. Fourteen of the crude plant extracts, 13 of the commercial plant products and 5 of the miscellaneous compounds showed promising control efficacies when used either preventively or curatively in the plant assay. A histopathological study was carried out on the mode of action of the resistance inducer, acibenzolar-S-methyl (ASM), which reduced scab severity and sporulation on apple seedlings in several plant assays when applied as preventive treatment. The effect of the inducer on key pre- and post-penetration events of V. inaequalis was studied and compared to these events in water-treated control leaves. The histopathological study showed that the inducer had its strongest effect on post-penetration events indicated by delayed infection and reduced stroma development. In addition, a small but significant inhibition of conidial germination and a stimulation of germ tube length were observed. This investigation provides new histopathological evidence for the mode of action of ASM against V. inaequalis and serves as a model for evaluation of the mechanisms by which the organically based fungicides reduce infection of V. inaequalis

    The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud

    Get PDF
    The Orion cloud complex presents a variety of star formation mechanisms and properties and it is still one of the most intriguing targets for star formation studies. We present VISTA/VIRCAM near-infrared observations of the L1630N star forming region, including the stellar clusters NGC 2068 and NGC 2071, in the Orion molecular cloud B and discuss them in combination with Spitzer data. We select 186 young stellar object (YSO) candidates in the region on the basis of multi-colour criteria, confirm the YSO nature of the majority of them using published spectroscopy from the literature, and use this sample to investigate the overall star formation properties in L1630N. The K-band luminosity function of L1630N is remarkably similar to that of the Trapezium cluster, i.e., it presents a broad peak in the range 0.3-0.7 M_\odot and a fraction of sub-stellar objects of \sim20%. The fraction of YSOs still surrounded by disk/envelopes is very high (\sim85%) compared to other star forming regions of similar age (1-2 Myr), but includes some uncertain corrections for diskless YSOs. Yet, a possibly high disk fraction together with the fact that 1/3 of the cloud mass has a gas surface density above the threshold for star formation (\sim129 M_\odot pc2^{-2}), points towards a still on-going star formation activity in L1630N. The star formation efficiency (SFE), star formation rate (SFR) and density of star formation of L1630N are within the ranges estimated for galactic star forming regions by the Spitzer "core to disk" and "Gould's Belt" surveys. However, the SFE and SFR are lower than the average value measured in the Orion A cloud and, in particular, lower than that in the southern regions of L1630. This might suggest different star formation mechanisms within the L1630 cloud complex.Comment: 22 pages, 9 figure

    The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars

    Get PDF
    (Abridged) The water deuterium fractionation (HDO/H2_2O abundance ratio) has traditionally been used to infer the amount of water brought to Earth by comets. Measuring this ratio in deeply-embedded low-mass protostars makes it possible to probe the critical stage when water is transported from clouds to disks in which icy bodies are formed. We present sub-arcsecond resolution observations of HDO in combination with H218_2^{18}O from the PdBI toward the three low-mass protostars NGC 1333-IRAS 2A, IRAS 4A-NW, and IRAS 4B. The resulting HDO/H2_2O ratio is 7.4±2.1×1047.4\pm2.1\times10^{-4} for IRAS 2A, 19.1±5.4×10419.1\pm5.4\times10^{-4} for IRAS 4A-NW, and 5.9±1.7×1045.9\pm1.7\times10^{-4} for IRAS 4B. Derived ratios agree with radiative transfer models within a factor of 2-4 depending on the source. Our HDO/H2_2O ratios for the inner regions (where T>100T>100 K) of four young protostars are only a factor of 2 higher than those found for pristine, solar system comets. These small differences suggest that little processing of water occurs between the deeply embedded stage and the formation of planetesimals and comets.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    C18O (3-2) observations of the Cometary Globule CG 12: a cold core and a C18O hot spot

    Get PDF
    The feasibility of observing the C18O (3-2) spectral line in cold clouds with the APEX telescope has been tested. As the line at 329.330 GHz lies in the wing of a strong atmospheric H2O absorption it can be observed only at high altitude observatories. Using the three lowest rotational levels instead of only two helps to narrow down the physical properties of dark clouds and globules. The centres of two C18O maxima in the high latitude low mass star forming region CG 12 were mapped in C18O (3-2) and the data were analyzed together with spectral line data from the SEST. The T_MB(3-2)/T_MB(2-1) ratio in the northern C18O maximum, CG 12 N, is 0.8, and in the southern maximum, CG 12 S, ~2. CG 12 N is modelled as a 120'' diameter (0.4pc) cold core with a mass of 27 Msun. A small size maximum with a narrow, 0.8 kms-1, C18O (3-2) spectral line with a peak temperature of T_MB ~11 K was detected in CG 12 S. This maximum is modelled as a 60'' to 80'' diameter (~0.2pc) hot (80 K < Tex < 200 K) ~1.6 Msun clump. The source lies on the axis of a highly collimated bipolar molecular outflow near its driving source. This is the first detection of such a compact, warm object in a low mass star forming region.Comment: APEX A&A special issue, accepte

    Atomic jet from SMM1 (FIRS1) in Serpens uncovers non-coeval binary companion

    Full text link
    We report on the detection of an atomic jet associated with the protostellar source SMM1 (FIRS1) in Serpens. The jet is revealed in [FeII] and [NeII] line maps observed with Spitzer/IRS, and further confirmed in HiRes IRAC and MIPS images. It is traced very close to SMM1 and peaks at ~5 arcsec" from the source at a position angle of $\sim 125 degrees. In contrast, molecular hydrogen emission becomes prominent at distances > 5" from the protostar and extends at a position angle of 160 degrees. The morphological differences suggest that the atomic emission arises from a companion source, lying in the foreground of the envelope surrounding the embedded protostar SMM1. In addition the molecular and atomic Spitzer maps disentangle the large scale CO (3-2) emission observed in the region into two distinct bipolar outflows, giving further support to a proto-binary source setup. Analysis at the peaks of the [FeII] jet show that emission arises from warm and dense gas (T ~1000 K, n(electron) 10^5 - 10^6 cm^-3). The mass flux of the jet derived independently for the [FeII] and [NeII] lines is 10^7 M(sun)/yr, pointing to a more evolved Class~I/II protostar as the driving source. All existing evidence converge to the conclusion that SMM1 is a non-coeval proto-binary source.Comment: 10 pages, 7 figures, 1 table. Accepted for publication in Astronomy \& Astrophysic

    On C*-algebras generated by pairs of q-commuting isometries

    Full text link
    We consider the C*-algebras O_2^q and A_2^q generated, respectively, by isometries s_1, s_2 satisfying the relation s_1^* s_2 = q s_2 s_1^* with |q| < 1 (the deformed Cuntz relation), and by isometries s_1, s_2 satisfying the relation s_2 s_1 = q s_1 s_2 with |q| = 1. We show that O_2^q is isomorphic to the Cuntz-Toeplitz C*-algebra O_2^0 for any |q| < 1. We further prove that A_2^{q_1} is isomorphic to A_2^{q_2} if and only if either q_1 = q_2 or q_1 = complex conjugate of q_2. In the second part of our paper, we discuss the complexity of the representation theory of A_2^q. We show that A_2^q is *-wild for any q in the circle |q| = 1, and hence that A_2^q is not nuclear for any q in the circle.Comment: 18 pages, LaTeX2e "article" document class; submitted. V2 clarifies the relationships between the various deformation systems treate

    Classifying the embedded young stellar population in Perseus and Taurus & the LOMASS database

    Get PDF
    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims. We aim to separate the truly embedded YSOs from more evolved sources. Methods. Maps of HCO+ J=4-3 and C18O J=3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize emission from high (column) density gas. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+ J=4-3 and 850 micron dust emission are used to classify the embedded nature of YSOs. Results. Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Conclusions. Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales of 0.38 Myr for the embedded phase.Comment: 33 pages, 21 figures, 6 tables, Accepted to be published in A&
    corecore