49 research outputs found

    Skin Mast Cells Contribute to Sporothrix schenckii Infection

    Get PDF
    Background: Sporothrix schenckii (S. schenckii), a dimorphic fungus, causes sporotrichosis. Mast cells (MCs) have been described to be involved in skin fungal infections. The role of MCs in cutaneous sporotrichosis remains largely unknown. Objectives: To characterize the role and relevance of MCs in cutaneous sporotrichosis. Methods: We analyzed cutaneous sporotrichosis in wild-type (WT) mice and two different MC-deficient strains. In vitro, MCs were assessed for S. schenckii-induced cytokine production and degranulation after incubation with S. schenckii. We also explored the role of MCs in human cutaneous sporotrichosis. Results: WT mice developed markedly larger skin lesions than MC-deficient mice (> 1.5 fold) after infection with S. schenckii, with significantly increased fungal burden. S. schenckii induced the release of tumor necrosis factor alpha (TNF), interleukin (IL)-6, IL-10, and IL-1β by MCs, but not degranulation. S. schenckii induced larger skin lesions and higher release of IL-6 and TNF by MCs as compared to the less virulent S. albicans. In patients with sporotrichosis, TNF and IL-6 were increased in skin lesions, and markedly elevated levels in the serum were linked to disease activity. Conclusions: These findings suggest that cutaneous MCs contribute to skin sporotrichosis by releasing cytokines such as TNF and IL-6

    Skin and Systemic Inflammation in Schnitzler's Syndrome Are Associated With Neutrophil Extracellular Trap Formation

    Get PDF
    Schnitzler's syndrome is a rare autoinflammatory disorder characterized by interleukin-1ß-mediated and neutrophil-dominated inflammation. Neutrophil extracellular traps (NETs) are web-like structures of decondensed chromatin, histones, and antimicrobial peptides released by neutrophils. NETs were initially described in the context of pathogen defense but are also involved in autoimmune-mediated skin diseases. Here, we assessed the role of neutrophil extracellular trap formation (NETosis) in Schnitzler's syndrome. Immunofluorescence co-staining of myeloperoxidase and subnucleosomal complex was performed on lesional skin samples from patients with Schnitzler's syndrome, other neutrophilic dermatoses (cryopyrin-associated periodic syndrome, Sweet syndrome, and pyoderma gangrenosum), urticarial vasculitis and chronic spontaneous urticaria as well as healthy control skin. Blood neutrophils from patients with Schnitzler's syndrome and controls were isolated, and NETosis was induced by phorbol 12-myristate 13-acetate (PMA). Also, NETosis of control neutrophils induced by symptomatic Schnitzler's syndrome sera, cytokines and sub-threshold PMA doses was studied. Immunofluorescence co-staining revealed widespread and substantial NET formation in lesional skin of Schnitzler's syndrome patients but absence of NETs in chronic spontaneous urticaria and control skin. Neutrophils undergoing NETosis were observed in the skin of other neutrophilic diseases too. Correspondingly, blood neutrophils from Schnitzler's syndrome patients showed significantly elevated NETosis rates compared to control neutrophils following stimulation with PMA. Increased NETosis correlated well with high levels of C-reactive protein (CRP). SchS patients with the lowest NETosis rates had persistent joint and bone pain despite IL-1 blockade. Stimulation of control neutrophils and sub-threshold PMA with sera of symptomatic Schnitzler's syndrome patients disclosed enhanced NETosis as compared to control sera. Our results suggest that the induction of NET formation by neutrophils contributes to skin and systemic inflammation and may support the resolution of local inflammation in Schnitzler's syndrome.</p

    Skin and Systemic Inflammation in Schnitzler's Syndrome Are Associated With Neutrophil Extracellular Trap Formation

    Get PDF
    Schnitzler's syndrome is a rare autoinflammatory disorder characterized by interleukin-1ß-mediated and neutrophil-dominated inflammation. Neutrophil extracellular traps (NETs) are web-like structures of decondensed chromatin, histones, and antimicrobial peptides released by neutrophils. NETs were initially described in the context of pathogen defense but are also involved in autoimmune-mediated skin diseases. Here, we assessed the role of neutrophil extracellular trap formation (NETosis) in Schnitzler's syndrome. Immunofluorescence co-staining of myeloperoxidase and subnucleosomal complex was performed on lesional skin samples from patients with Schnitzler's syndrome, other neutrophilic dermatoses (cryopyrin-associated periodic syndrome, Sweet syndrome, and pyoderma gangrenosum), urticarial vasculitis and chronic spontaneous urticaria as well as healthy control skin. Blood neutrophils from patients with Schnitzler's syndrome and controls were isolated, and NETosis was induced by phorbol 12-myristate 13-acetate (PMA). Also, NETosis of control neutrophils induced by symptomatic Schnitzler's syndrome sera, cytokines and sub-threshold PMA doses was studied. Immunofluorescence co-staining revealed widespread and substantial NET formation in lesional skin of Schnitzler's syndrome patients but absence of NETs in chronic spontaneous urticaria and control skin. Neutrophils undergoing NETosis were observed in the skin of other neutrophilic diseases too. Correspondingly, blood neutrophils from Schnitzler's syndrome patients showed significantly elevated NETosis rates compared to control neutrophils following stimulation with PMA. Increased NETosis correlated well with high levels of C-reactive protein (CRP). SchS patients with the lowest NETosis rates had persistent joint and bone pain despite IL-1 blockade. Stimulation of control neutrophils and sub-threshold PMA with sera of symptomatic Schnitzler's syndrome patients disclosed enhanced NETosis as compared to control sera. Our results suggest that the induction of NET formation by neutrophils contributes to skin and systemic inflammation and may support the resolution of local inflammation in Schnitzler's syndrome

    S-Layer From Lactobacillus brevis Modulates Antigen-Presenting Cell Functions via the Mincle-Syk-Card9 Axis

    Get PDF
    C-type lectin receptors (CLRs) are pattern recognition receptors that are crucial in the innate immune response. The gastrointestinal tract contributes significantly to the maintenance of immune homeostasis; it is the shelter for billions of microorganisms including many genera of Lactobacillus sp. Previously, it was shown that host-CLR interactions with gut microbiota play a crucial role in this context. The Macrophage-inducible C-type lectin (Mincle) is a Syk-coupled CLR that contributes to sensing of mucosa-associated commensals. In this study, we identified Mincle as a receptor for the Surface (S)-layer of the probiotic bacteria Lactobacillus brevis modulating GM-CSF bone marrow-derived cells (BMDCs) functions. We found that the S-layer/Mincle interaction led to a balanced cytokine response in BMDCs by triggering the release of both pro- and anti-inflammatory cytokines. In contrast, BMDCs derived from Mincle−/−, CARD9−/− or conditional Syk−/− mice failed to maintain this balance, thus leading to an increased production of the pro-inflammatory cytokines TNF and IL-6, whereas the levels of the anti-inflammatory cytokines IL-10 and TGF-β were markedly decreased. Importantly, this was accompanied by an altered CD4+ T cell priming capacity of Mincle−/− BMDCs resulting in an increased CD4+ T cell IFN-γ production upon stimulation with L. brevis S-layer. Our results contribute to the understanding of how commensal bacteria regulate antigen-presenting cell (APC) functions and highlight the importance of the Mincle/Syk/Card9 axis in APCs as a key factor in host-microbiota interactions.Fil: Prado Acosta, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Goyette Desjardins, Guillaume. University of Veterinary Medicine; AustriaFil: Scheffel, Jörg. Humboldt-Universität zu Berlin; AlemaniaFil: Dudeck, Anne. Otto-von-Guericke-Universität Magdeburg; AlemaniaFil: Ruland, Jürgen. Universitat Technical Zu Munich; AlemaniaFil: Lepenies, Bernd. University of Veterinary Medicine; Austri

    Bruton's tyrosine kinase inhibition—An emerging therapeutic strategy in immune-mediated dermatological conditions

    Get PDF
    Funding Information: PM‐B received honoraria for acting as a consultant and/or as a speaker for AbbVie, Janssen, Novartis, LEO Pharma, Almirall, Sanofi, Viatris, L’Oréal, and Cantabria Labs and served as a principal investigator in clinical trials supported by AbbVie, Sanofi, and Novartis. AB received honoraria for lectures and educational events for LEO Pharma, Janssen‐Cilag, AbbVie, and Novartis. PK received payment/honoraria for lectures/presentations outside of submitted work for Novartis and Roche.. SM‐R received funding from GA²LEN Global Allergy and Asthma European Network. MM served as a speaker and/or advisor for and/or has received research funding from Allakos, Amgen, Aralez, ArgenX, AstraZeneca, Blueprint, Celldex, Centogene, CSL Behring, FAES, Genentech, Gilead, GIInnovation, Innate Pharma, Kyowa Kirin, Leo Pharma, Lilly, Menarini, Moxie, Novartis, Roche, Sanofi/Regeneron, Third Harmonic Bio, UCB, and Uriach. SF and JS have no conflicts of interest to disclose. Funding Information: We acknowledge Becky Fox‐Spencer, Ph.D. (on behalf of Bedrock Healthcare Communications), who provided writing support for this manuscript, funded by Novartis Pharma AG (Basel, Switzerland). Publisher Copyright: © 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.Bruton's tyrosine kinase (BTK), a member of the Tec kinase family, is critically involved in a range of immunological pathways. The clinical application of BTK inhibitors for B-cell malignancies has proven successful, and there is strong rationale for the potential benefits of BTK inhibitors in some autoimmune and allergic conditions, including immune-mediated dermatological diseases. However, the established risk-to-benefit profile of “first-generation” BTK inhibitors cannot be extrapolated to these emerging, non-oncological, indications. “Next-generation” BTK inhibitors such as remibrutinib and fenebrutinib entered clinical development for chronic spontaneous urticaria (CSU); rilzabrutinib and tirabrutinib are being studied as potential treatments for pemphigus. Promising data from early-phase clinical trials in CSU suggest potential for these agents to achieve strong pathway inhibition, which may translate into measurable clinical benefits, as well as other effects such as the disruption of autoantibody production. BTK inhibitors may help to overcome some of the shortcomings of monoclonal antibody treatments for immune-mediated dermatological conditions such as CSU, pemphigus, and systemic lupus erythematosus. In addition, the use of BTK inhibitors may improve understanding of the pathophysiological roles of mast cells, basophils, and B cells in such conditions.publishersversionepub_ahead_of_prin

    Chymase-Cre; Mcl-1fl/fl Mice Exhibit Reduced Numbers of Mucosal Mast Cells

    Get PDF
    Mast cells (MCs) are considered as key effector cells in the elicitation of allergic symptoms, and they are essential players in innate and adaptive immune responses. In mice, two main types of MCs have been described: connective tissue MCs (CTMCs) and mucosal MCs (MMCs). However, little is known about the biological functions of MMCs, which is due to the lack of suitable models to investigate MMCs in vivo. Here, we aimed to generate a mouse model selectively deficient in MMCs. It has been previously described that Cre expressed under the control of the baboon α-chymase promotor is predominantly localized in MMCs. Therefore, we mated α-chymase-Cre transgenic mice with mice bearing a floxed allele of the myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 encodes for an intracellular antiapoptotic factor in MCs; hence, a selective reduction in MMCs was expected. Our results show that this new mouse model contains markedly reduced numbers of MMCs in mucosal tissues, whereas numbers of CTMCs are normal. Thus, Chm-Cre; Mcl-1fl/fl mice are a useful tool for the investigation of the pathophysiological functions of MMCs in vivo

    STAT3 gain-of-function is not responsible for low total IgE levels in patients with autoimmune chronic spontaneous urticaria

    Get PDF
    BackgroundThe pathogenesis of chronic spontaneous urticaria (CSU) has not been clarified entirely. Type IIb autoimmune chronic spontaneous urticaria (CSUaiTIIb) is a distinct subtype of CSU that is often difficult to treat and is connected to low levels of total IgE. Previous findings indicate that an enhanced signal transducer and activator of transcription 3 (STAT3) may be responsible for reduced IgE serum levels.ObjectiveOur aim was to investigate a possible underlying gain-of-function mutation or activating polymorphism in STAT3 that could be responsible for the low levels of IgE in patients with CSUaiTIIb.MethodsWe included 10 patients with CSUaiTIIb and low levels of IgE and sequenced selected single nucleotide polymorphisms (SNP) in STAT3 associated with common autoimmune diseases. Exon sequencing was performed for the most relevant exons of STAT3. To test for a gain-of-function of STAT3, we performed a phospho-specific flow cytometry analysis of STAT3 in peripheral blood mononuclear cells before and after stimulation with interleukin-6.ResultsNo differences were found in the prevalence of the tested SNPs between our patients and a control population. Moreover, we could not find any mutations or variants on the tested exons of STAT3. The function of STAT3 was also not altered in our patients.ConclusionIn total, we could not find any evidence for our hypothesis that low IgE in patients with CSUaiTIIb is linked to mutations in STAT3 or altered activity of STAT3. Thus, it remains to be discovered what causes the low serum levels of IgE in patients with CSUaiTIIb

    Autologous serum skin test reactions in chronic spontaneous urticaria differ from heterologous cell reactions

    Get PDF
    Background: Autoimmune chronic spontaneous urticaria (CSU) is due to mast cell (MC)-activating autoantibodies, which are screened for by the autologous serum skin test (ASST) and basophil tests (BTs). Many CSU patients are positive in only one of these tests. How often this occurs and why is currently unknown. Objectives: To characterize the prevalence of mismatched ASST and BTs in CSU patients, and to investigate possible reasons for these mismatches. Methods: We determined the rates of ASST+/BT- and ASST-/BT+ mismatches in published CSU studies. We assessed sera from 48 CSU patients by ASST, two BTs (basophil histamine release assay, BHRA; basophil activation test, BAT), a MC histamine release assay (MCHRA) and by ex vivo skin microdialysis (SMD). Results: The ASST/BT mismatch rate in published CSU studies was 31% (ASST+/BT-: 22%, ASST-/BT+: 9%). In our patients, the ASST/BHRA and ASST/BAT mismatch rate was 35.4% (ASST+/BHRA-: 18.8% and ASST-/BHRA+: 16.7%) and 31.3% (ASST+/BAT-: 6.3% and ASST-/BAT+: 25.0%), respectively, and the two BTs were significantly correlated (P = 0.0002). The use of heterologous MCs, in vitro and in situ, instead of basophils produced similar results (MCHRA mismatch: 47.9%, ASST+/MCHRA-: 18.8%, ASST-/MCHRA+: 29.2%; SMD mismatch: 40.0%, ASST+/SMD-: 10.0% and ASST-/SMD+: 30.0%), and the MCHRA was highly correlated with SMD results (P = 0.0002). Conclusions: The ASST and BTs show divergent results in a third of CSU patients. Mismatches cannot be explained by the choice of basophil assay, the type of heterologous cells exposed to CSU serum in vitro (basophils vs. mast cells), nor the experimental setting of heterologous skin mast cells (in vitro vs. in situ). Thus, serum-induced whealing, in CSU patients, seems to involve autologous skin signals modulating MC degranulation

    In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging

    Get PDF
    Mast cells (MCs) are multifunctional cells of the immune system and are found in skin and all major tissues of the body. They contribute to the pathology of several diseases including urticaria, psoriasis, atopic dermatitis and mastocytosis where they are increased at lesional sites. Histomorphometric analysis of skin biopsies serves as a routine method for the assessment of MC numbers and their activation status, which comes with major limitations. As of now, non-invasive techniques to study MCs in vivo are not available. Here, we describe a label-free imaging technique to visualize MCs and their activation status in the human papillary dermis in vivo. This technique uses two-photon excited fluorescence lifetime imaging (TPE-FLIM) signatures, which are different for MCs and other dermal components. TPE-FLIM allows for the visualization and quantification of dermal MCs in healthy subjects and patients with skin diseases. Moreover, TPE-FLIM can differentiate between two MC populations in the papillary dermis in vivo—resting and activated MCs with a sensitivity of 0.81 and 0.87 and a specificity of 0.85 and 0.84, respectively. Results obtained on healthy volunteers and allergy and mastocytosis patients indicate the existence of other MC subpopulations within known resting and activated MC populations. The developed method may become an important tool for non-invasive in vivo diagnostics and therapy control in dermatology and immunology, which will help to better understand pathomechanisms involving MC accumulation, activation and degranulation and to characterize the effects of therapies that target MCs

    A novel histopathological scoring system to distinguish urticarial vasculitis from chronic spontaneous urticaria

    Get PDF
    Background: Urticarial vasculitis (UV) is defined by long-lasting urticarial lesions combined with the histopathologic findings of leukocytoclastic vasculitis. As one of the major unmet needs in UV, diagnostic criteria are rather vague and not standardized. Moreover, there seems to be considerable overlap with chronic spontaneous urticaria (CSU), particularly for the normocomplementemic variant of UV. Therefore, this study aimed to develop a diagnostic scoring system that improves the histopathologic discrimination between UV and CSU. Methods: Lesional skin sections of patients with clinical and histopathologic diagnosis of UV (n = 46) and CSU (n = 51) were analyzed (blinded to the diagnosis) for the following pre-defined criteria: presence of leukocytoclasia, erythrocyte extravasation, fibrin deposits, endothelial cell swelling, ectatic vessels, blurred vessel borders, dermal edema, intravascular neutrophil, and eosinophil numbers and numbers of dermal neutrophils, macrophages and mast cells. Results: The greatest differences between UV and CSU samples were observed for leukocytoclasia (present in 76% of UV vs. 3.9% of CSU samples; p < 0.0001), erythrocyte extravasation (present in 41.3% of UV vs. 2.0% of CSU samples; p < 0.0001), and fibrin deposits (present in 27.9% of UV vessels vs. 9.7% of CSU vessels; p < 0.0001). Based on these findings, we developed a diagnostic score, the urticarial vasculitis score (UVS), which correctly assigned 37 of 46 cases of UV and 49 of 51 cases of CSU to the previously established diagnosis. Conclusion: Our results suggest that the UVS, a combined quantitative assessment of the three criteria leukocytoclasia, fibrin deposits and extravasated erythrocytes, distinguishes UV from CSU in skin histopathology. The UVS, if validated in larger patient samples, may help to improve the diagnostic approach to UV
    corecore