68 research outputs found

    New magnetic anomaly map for the Red Sea reveals transtensional structures associated with rotational rifting

    Get PDF
    The Red Sea is a modern analogue for studying continental break-up. Particularly, the Red Sea shows along-strike variability in the architecture, magmatism and associated style of rifting. In order to study these variabilities, continuous geophysical data that cover the entire length of the basin is desired. Our study aims to produce a continuous, reliable and robust magnetic anomaly map for the Red Sea. We present a new magnetic anomaly map for the Red Sea, derived from re-processing of shipborne data, merged and conformed to a recent satellite model, LCS-1. The new magnetic map reveals prominent patterns of magnetic anomalies in sub-perpendicular directions to the Red Sea, with a northward increase in obliquity. We provide further analysis for the magnetic data and associate sets of magnetic trends with transtensional basement structures. Directional analysis suggests a gradual increase in shear component along the Red Sea. The magnetic trends are coaxial with independent indicators of finite and instantaneous strains, and thus implies that these structures and their variability are related to the kinematic framework of the rift. We discuss the consequences of rifting close to the Euler pole, i.e. rotational rifting, and argue that both passive and active forces can explain an increased along-strike transtension, and accordingly the associated variability along the Red Sea

    Global High-Resolution Magnetic Field Inversion using Spherical Harmonic Representation of Tesseroids as Individual Sources

    Get PDF
    In this study, we present a novel approach combining the advantages of tesseroids in representing geophysical structures though their voxel-like discretization features with a spherical harmonic representation of the magnetic field. Modelling of the Earth lithospheric magnetic field is challenging since part of the spectra is hidden by the core field and the forward modeled field of a lithospheric magnetization is always biased by the spectral range used. In our approach, a spherical harmonic representation of the magnetic field of spherical prisms (tesseroids) is used for high-resolution magnetic inversion of lithospheric field models. The use of filtered spherical harmonic models of the magnetic field of each tesseroid ensures that the resulting field matches the spectral range of the input data. For the inversion, we use the projected gradient method. The projected gradient method easily allows us to assign an initial guess (i.e., a-priori assumption) for the inversion and avoids negative values of susceptibilities. The latter is providing more plausible models since induced magnetization is assumed to be dominant over the continents and, for the oceans, a remanence model can be subtracted. We show an application of the technique to a synthetic dataset and a satellite-derived lithospheric field model where the model geometry is based on seismic information. We also demonstrate a proof-of-concept for high-resolution tile-wise inversion for the Bangui anomaly in Africa

    Geothermal Heat Flux in Antarctica: Assessing Models and Observations by Bayesian Inversion

    Get PDF
    Geothermal heat flux under the Antarctic ice is one of the least known parameters. Different methods (based on e.g., magnetic or seismic data) have been applied in recent years to quantify the thermal structure and the geothermal heat flux, resulting in vastly different estimates. In this study, we use a Bayesian Monte-Carlo-Markov-Chain approach to explore the consistency of such models and to which degree lateral variations of the thermal parameters are required. Hereby, we evaluate the input from different lithospheric models and how they influence surface heat flux. We demonstrate that both Curie isotherm and heat production are dominating parameters for the thermal calculation and that use of incorrect models or sparsely available data lead to unreliable results. As an alternative approach, geological information should be coupled with geophysical data analysis, as we demonstrate for the Antarctic Peninsula

    Surface Wavefield Tomography of the Alpine Region to Constrain Slab Geometries, Lithospheric Deformation and Asthenospheric Flow

    Get PDF
    Surface waves radiated by teleseismic earthquakes are ideally suited to constrain isotropic and anisotropic elastic properties of the upper mantle down to about 300 km depth beneath dense networks of broad-band stations. Rayleigh wave phase velocities were automatically determined in a broad period range from 8 s to 300 s and a very strict quality control was applied. This resulted in a data set of more than 200,000 inter-station phase velocity curves. Local dispersion curves, extracted from phase velocity maps were inverted for a 3D shear-wave velocity model (MeRE2020) using a newly developed stochastic inversion algorithm based on particle swarm optimization. It was shown that the presence of small and highly segmented slabs can be resolved by surface wave tomography in case of a high station density. In the western Alps, a short Eurasian slab was imaged down to about 150 km depth, whereas at larger depths a pronounced low velocity anomaly indicates slab break-off. In the northern Apennines, a nearly vertical south-dipping slab connected to the Adriatic mantle lithosphere beneath the Po Basin is observed. In the central Alps, the presence of Eurasian mantle lithosphere is found down to the bottom of the model at 300 km depth. Whereas in the eastern Alps, a short Eurasian nearly vertical dipping slab is found down to only 150 km depth. The presence of a short slab consisting of Adriatic mantle lithosphere is also indicated beneath the northern Dinarides extending towards the Alps east of the Giudicaria fault. Anisotropic phase velocity maps show at 25 s period (lower crustal depth) mostly fast orogen parallel directions, whereas in the western Alps azimuthal anisotropy is more inclined with respect to the Alpine arc. At 100 s period, azimuthal anisotropy beneath the western Alps indicates asthenospheric flow towards the Ligurian Sea and beneath the northern Dinarides towards the Pannonian Basin through slab gaps. Moreover, seismic wavefields were analysed using AlpArray and Swath-D data. Wavefield animations illustrate the considerable spatio-temporal variability of the wavefield's properties at a lateral resolution down to about 100km. Within denser station distributions like those provided by Swath-D, even shorter period body and surface wave features can be recovered. Considerable amplifications of the Rayleigh wave in the Alpine area are observed for several earthquakes. To analyse Rayleigh wave quantitatively, an algorithm has been developed to extract their phase and amplitude fields using cross correlation between synthetic waveforms and recordings of a dense array. Phase fields are unwrapped by solving a linear system of equations. Phase and amplitude fields are quality controlled and interpolated to determine structural phase velocity fields using Helmholtz tomography. It is shown that the observed amplitude fields depend heavily on lateral heterogeneity outside the array. Often, linear amplifications in the propagation direction are observed. In order to model the observed wavefields, the AxiSEM-SPECFEM Coupling algorithm has been improved and adapted concerning flexibility and efficiency, reducing the necessary wavefield interpolation significantly and allowing topography as well as existing 3D Models of the Alpine region to be easily implemented

    INTEGRATE - Integrated 3D structural, thermal, gravity and rheological modeling of the Alps and their forelands

    Get PDF
    The aim of this project was to obtain a better understanding of the crust and the uppermost mantle beneath the Alpine orogen and its forelands and to test different hypotheses on the configuration of the subduction system as well as on the distribution of deformation and seismicity. Therefore, we have integrated the geoscientific observations publicly available so far on properties of the sediments and the crystalline crust (geometry, seismic velocities, and densities) with seismologically derived heterogeneities in the sub-crustal mantle into a consistent data-based 3D structural model that resolves the first-order contrasts in physical properties of the units composing the orogen and the forelands. The derived structural model was additionally constrained by 3D gravity modelling and used as input to derive a lithospheric temperature field based on petrological assumptions on the composition of the crust and mantle. This is done to study the effects of regional heat-flow into the Alps and their foreland basins. Starting from these 3D density thermal and lithology models, the integrated strength was derived and discussed in the context of stress and deformation fields. The project led to the successful completion of a dissertation by Cameron Spooner who obtained the highest possible grade (“summa cum laude”) from the University of Potsdam and published 4 high-level papers. Also, a Master thesis was successfully completed by Max Lowe at CAU Kiel that also led to a publication (Lowe et al. 2021). As members of the AAAGRG, the partners of CAU Kiel were significantly involved in the compilation of the new gravity maps for the Alps and their forelands (Zahorek 2021). The project contributed to “Theme 3: deformation of the crust and mantle during mountain building”, in providing the configuration of the different crustal units and of the lithospheric mantle. The project also contributed to “Theme 4: motion patterns and seismicity” in that it supported identifying spatial patterns of faulting and seismicity in relation to the rheological configuration. In response to its regional character, the project links with the different activity fields of the SPP and a continuous exchange of observations and modelling results with many working groups in the SPP and supported data processing and interpretation

    Modeling Lithospheric Thickness Along the Conjugate South Atlantic Passive Margins Implies Asymmetric Rift Initiation

    Get PDF
    The lithospheric architecture of passive margins is crucial for understanding the tectonic processes that caused the breakup of Gondwana. We highlight the evolution of the South Atlantic passive margins by a simple thermal lithosphere-asthenosphere boundary (LAB) model based on onset and cessation of rifting, crustal thickness, and stretching factors. We simulate lithospheric thinning and select the LAB as the T = 1,330°C isotherm, which is calculated by 1D advection and diffusion. Stretching factors and margin geometry are adjusted to state-of-the-art data sets, giving a thermal LAB model that is especially designed for the continental margins of the South Atlantic. Our LAB model shows distinct variations along the passive margins that are not imaged by global LAB models, indicating different rifting mechanisms. For example, we model up to 200 km deep lithosphere in the South American Santos Basin and shallow lithosphere less than 60 km in the Namibe Basin offshore Africa. These two conjugate basins reflect a strong asymmetry in LAB depth that resembles variations in margin width. In a Gondwana reconstruction, we discuss these patterns together with seismic velocity perturbations for the Central and Austral Segments of the margins. The shallow lithosphere in the Namibe Basin correlates with signatures of the Angola Dome, attributed to epeirogenic uplift in the Neogene, suggesting an additional component of post-breakup lithospheric thinning

    East Antarctica magnetically linked to its ancient neighbours in Gondwana

    Get PDF
    We present a new magnetic compilation for Central Gondwana conformed to a recent satellite magnetic model (LCS-1) with the help of an equivalent layer approach, resulting in consistent levels, corrections that have not previously been applied. Additionally, we use the satellite data to its full spectral content, which helps to include India, where high resolution aeromagnetic data are not publically available. As India is located north of the magnetic equator, we also performed a variable reduction to the pole to the satellite data by applying an equivalent source method. The conformed aeromagnetic and satellite data are superimposed on a recent deformable Gondwana plate reconstruction that links the Kaapvaal Craton in Southern Africa with the Grunehogna Craton in East Antarctica in a tight fit. Aeromagnetic anomalies unveil, however, wider orogenic belts that preserve remnants of accreted Meso- to Neoproterozoic crust in interior East Antarctica, compared to adjacent sectors of Southern Africa and India. Satellite and aeromagnetic anomaly datasets help to portray the extent and architecture of older Precambrian cratons, re-enforcing their linkages in East Antarctica, Australia, India and Africa

    The influence of region of interest width in fetal 2D-speckle tracking echocardiography late in pregnancy

    Get PDF
    Speckle tracking echocardiography is a promising method for assessment of myocardial function in fetal and neonatal hearts, but further studies are necessary to validate and optimize the settings for use in fetal cardiology. Previous studies have shown that the definition of the region of interest (ROI) affects strain values in adults. The aim of this study was to investigate how different widths of ROI influences measurements of four-chamber longitudinal systolic strain in fetuses late in pregnancy. Thirty-one singleton, healthy fetuses born to healthy mothers underwent an echocardiographic examination during gestational week 37. Speckle tracking was performed with two different settings for ROI width; the narrowest and second most narrow, provided both widths were assessed as suitable for the myocardial wall thickness of the fetus. We found an inverse correlation between the ROI width and the strain values. Four-chamber longitudinal strain changed from − 20.7 ± 3.6% to − 18.0 ± 4.4% (p < 0.001) with increasing ROI width. Further, strain decreased from the endocardium to the epicardium with multilayer measurements. Different widths of ROI influenced the strain measurements significantly in the fetal heart, comparable to what has been reported in adults. A standardization of the ROI setting could improve the interpretation, and reduce variability in fetal strain measurements.publishedVersio

    Earth tectonics as seen by GOCE - Enhanced satellite gravity gradient imaging

    Get PDF
    Curvature components derived from satellite gravity gradients provide new global views of Earth’s structure. The satellite gravity gradients are based on the GOCE satellite mission and we illustrate by curvature images how the Earth is seen differently compared to seismic imaging. Tectonic domains with similar seismic characteristic can exhibit distinct differences in satellite gravity gradients maps, which points to differences in the lithospheric build-up. This is particularly apparent for the cratonic regions of the Earth. The comparisons demonstrate that the combination of seismological, and satellite gravity gradient imaging has significant potential to enhance our knowledge of Earth’s structure. In remote frontiers like the Antarctic continent, where even basic knowledge of lithospheric scale features remains incomplete, the curvature images help unveil the heterogeneity in lithospheric structure, e.g. between the composite East Antarctic Craton and the West Antarctic Rift System
    corecore