10 research outputs found

    Prevalence of human papillomavirus infection of the anal canal in women: A prospective analysis of high-risk populations

    Get PDF
    Infection with certain types of human papillomavirus (HPV) has been associated with the development of cervical and anal cancer. Worldwide, the incidence of anal cancer has increased markedly. The present study aimed to evaluate the prevalence of HPV infection of the uterine cervix and anal canal in human immunodeficiency virus (HIV)- and non-HIV-infected risk populations. Cervical and anal HPV swabs and cytology samples were collected from 287 patients at the University Hospital of Munich, Germany between 2011 and 2013. Patients were divided into HIV-negative controls (G1) and two risk groups, including HIV-negative patients with cytological abnormalities of the cervix (G2) and HIV-infected patients (G3). Data, including clinical parameters, were analysed. The risk groups had significantly more positive results for HPV in the anus (71.03 and 83.15% for G2 and G3, respectively), as compared with G1. The predominant HPV genotypes found in the anus were high-risk HPV genotypes, which were significantly correlated with concomittant cervical HPV findings. In the risk groups, a significant association between the cytological findings and HPV detection in the cervix was found, while the results of the anus revealed no significance. The results of the present study suggested that the prevalence of HPV infection in the anal canal of risk populations is high. Furthermore, patients with abnormal cervical cytology results and HIV-infected women, irrespective of their individual cervical findings, may have a risk of concomittant anal high-risk HPV infection. Based on the predominant HPV genotypes found in the study, HPV vaccination could reduce the incidence of anal cancer. Nevertheless, high-risk patients should be intensively screened for anal squamous intraepithelial abnormalities to avoid invasive cancer stages

    CD40-Activated B Cells Can Efficiently Prime Antigen-Specific Naïve CD8+ T Cells to Generate Effector but Not Memory T cells

    Get PDF
    Background: The identification of the signals that should be provided by antigen-presenting cells (APCs) to induce a CD8 + T cell response in vivo is essential to improve vaccination strategies using antigen-loaded APCs. Although dendritic cells have been extensively studied, the ability of other APC types, such as B cells, to induce a CD8 + T cell response have not been thoroughly evaluated. Methodology/Principal Findings: In this manuscript, we have characterized the ability of CD40-activated B cells, stimulated or not with Toll-like receptor (TLR) agonists (CpG or lipopolysaccharide) to induce the response of mouse naïve CD8 + T cells in vivo. Our results show that CD40-activated B cells can directly present antigen to naïve CD8 + T cells to induce the generation of potent effectors able to secrete cytokines, kill target cells and control a Listeria monocytogenes infection. However, CD40-activated B cell immunization did not lead to the proper formation of CD8 + memory T cells and further maturation of CD40-activated B cells with TLR agonists did not promote the development of CD8 + memory T cells. Our results also suggest that inefficient generation of CD8 + memory T cells with CD40-activated B cell immunization is a consequence of reduced Bcl-6 expression by effectors and enhanced contraction of the CD8 + T cell response. Conclusions: Understanding why CD40-activated B cell immunization is defective for the generation of memory T cells and gaining new insights about signals that should be provided by APCs are key steps before translating the use of CD40-B cel

    Direct Carbon Isotope Exchange of Pharmaceuticals via Reversible Decyanation

    No full text
    The incorporation of carbon-14 allows tracking of organic molecules and provides vital knowledge on their fate. This information is critical in pharmaceutical development, crop science and human food safety evaluation. Herein, a transition-metal-catalyzed procedure enabling carbon isotope exchange on aromatic nitriles is described. Utilizing the radiolabeled precursor Zn([14C]CN)2, this protocol allows the insertion of the desired carbon tag without need of structural modifications, in a single step. Reducing synthetic costs and limiting the generation of radioactive waste, this procedure will facilitate the labeling of nitrile containing drugs and accelerate 14C-based ADME studies supporting drug development

    CCR7 Governs Skin Dendritic Cell Migration under Inflammatory and Steady-State Conditions

    No full text
    AbstractThe CC chemokine receptor CCR7 has been identified as a key regulator of homeostatic B and T cell trafficking to secondary lymphoid organs. Data presented here demonstrate that CCR7 is also an essential mediator for entry of both dermal and epidermal dendritic cells (DC) into the lymphatic vessels within the dermis while this receptor is dispensable for the mobilization of Langerhans cells from the epidermis to the dermis. Moreover, a distinct population of CD11c+MHCIIhigh DC showing low expression of the costimulatory molecules CD40, CD80, and CD86 in wild-type animals was virtually absent in skin-draining lymph nodes of CCR7-deficient mice under steady-state conditions. We provide evidence that these cells represent a semimature population of DC that is capable of initiating T cell proliferation under conditions known to induce tolerance. Thus, our data identify CCR7 as a key regulator that governs trafficking of skin DC under both inflammatory and steady-state conditions
    corecore