156 research outputs found

    Trends in yeast diversity discovery

    Get PDF
    Yeasts, usually defined as unicellular fungi, occur in various fungal lineages. Hence, they are not a taxonomic unit, but rather represent a fungal lifestyle shared by several unrelated lineages. Although the discovery of new yeast species occurs at an increasing speed, at the current rate it will likely take hundreds of years, if ever, before they will all be documented. Many parts of the earth, including many threatened habitats, remain unsampled for yeasts and many others are only superficially studied. Cold habitats, such as glaciers, are home to a specific community of cold-adapted yeasts, and, hence, there is some urgency to study such environments at locations where they might disappear soon due to anthropogenic climate change. The same is true for yeast communities in various natural forests that are impacted by deforestation and forest conversion. Many countries of the so-called Global South have not been sampled for yeasts, despite their economic promise. However, extensive research activity in Asia, especially China, has yielded many taxonomic novelties. Comparative genomics studies have demonstrated the presence of yeast species with a hybrid origin, many of them isolated from clinical or industrial environments. DNA-metabarcoding studies have demonstrated the prevalence, and in some cases dominance, of yeast species in soils and marine waters worldwide, including some surprising distributions, such as the unexpected and likely common presence of Malassezia yeasts in marine habitats.TG acknowledges support from the Spanish Ministry of Science and Innovation for grant PGC2018-099921-B-I00, cofounded by European Regional Development Fund (ERDF); from the Catalan Research Agency (AGAUR) SGR423; from the European Union’s Horizon 2020 research and innovation program (ERC-2016–724173); from the Gordon and Betty Moore Foundation (Grant # GBMF9742). JG acknowledges support from the Lendület Program (award no. 96049) of the Hungarian Academy of Sciences and the Eötvös Lóránd Research Network. Q-MW was supported by grants No. 31961133020 and No. 31770018 from the National Natural Science Foundation of China (NSFC). ASA and FEB were supported by grant 9343 from the Gordon and Betty Moore Foundation: https://doi.org/10.37807/GBMF9343."Article signat per 12 autors/es: Teun Boekhout, Anthony S. Amend, Fouad El Baidouri, Toni Gabaldón, József Geml, Moritz Mittelbach, Vincent Robert, Chen Shuhui Tan, Benedetta Turchetti, Duong Vu, Qi-Ming Wang & Andrey Yurkov "Postprint (published version

    Halimium as an ectomycorrhizal symbiont: new records and an appreciation of known fungal diversity

    Get PDF
    AbstractHalimium is a genus of Cistaceae, containing a small group of shrub species found in open vegetation types and in degraded forest patches throughout the western and central Mediterranean region. We recently described the morpho-anatomical features of the ectomycorrhizae formed by Scleroderma meridionale on Halimium halimifolium, but the mycorrhizal biology of this host plant genus is still largely unexplored. Here, we report new data on the ectomycorrhizal fungal symbionts of Halimium, based on the collection of sporocarps and ectomycorrhizal root tips in pure stands occurring in Sardinia, Italy. To obtain a broader view of Halimium mycorrhizal and ecological potential, we compiled a comprehensive and up-to-date checklist of fungal species reported to establish ectomycorrhizae on Halimium spp. on the basis of field observations, molecular approaches, and mycorrhiza synthesis. Our list comprises 154 records, corresponding to 102 fungal species and 35 genera, revealing a significant diversity of the Halimium ectomycorrhizal mycobiota. Key ectomycorrhizal genera like Russula, Lactarius/Lactifluus, Amanita, Inocybe, and Cortinarius account for more than half of all mycobionts. A large proportion of Halimium fungal species are shared with other host plants in various ecological settings, suggesting a critical role of common mycorrhizal networks in the function played by this shrub in various Mediterranean ecosystems

    Mycoparasitism capability and growth inhibition activity of Clonostachys rosea isolates against fungal pathogens of grapevine trunk diseases suggest potential for biocontrol

    Get PDF
    The present study aimed to examine the capability of Clonostachys rosea isolates as a biological control agent against grapevine trunk diseases pathogens. Five C. rosea and 174 pathogenic fungal strains were isolated from grafted grapevines and subjected to in vitro confrontation tests. Efficient antagonism was observed against Eutypa lata and Phaeomoniella chlamydospora while mycoparasitism was observed to the pathogens of Botryosphaeria dothidea and Diaporthe spp. pathogens in in vitro dual culture assays. The conidia production of the C. rosea isolates were also measured on PDA plates. One isolate (19B/1) with high antagonistic capabilities and efficient conidia production was selected for in planta confrontation tests by mixing its conidia with the soil of Cabernet sauvignon grapevine cuttings artificially infected with B. dothidea, E. lata and P. chlamydospora. The length and/or the incidence of necrotic lesions caused by E. lata and P. chlamydospora at the inoculation point were significantly decreased after a three months incubation in the greenhouse on cuttings planted in soils inoculated with the conidia of strain 19B/1, while symptom incidence and severity were unaffected in the case of the pathogen B. dothidea. Based on the above results, we consider C. rosea a promising biological control agent against some grapevine trunk diseases

    Soil Fungal Communities under Pinus patula Schiede ex Schltdl. & Cham. Plantation Forests of Different Ages in Ethiopia

    Get PDF
    Producción CientíficaThe cultivation of plantation forests is likely to change the diversity and composition of soil fungal communities. At present, there is scant information about these communities in Ethiopian plantation forest systems. We assessed the soil fungal communities in Pinus patula Schiede ex Schltdl. & Cham. stands aged 5, 11, or 36-years-old using DNA metabarcoding of ITS2 amplicons. The ecological conditions of each plot, such as climate, altitude, and soil, were similar. Stand age and soil fertility influenced soil fungal species diversity and ecological guilds. In total, 2262 fungal operational taxonomic units were identified, of which 2% were ectomycorrhizal (ECM). The diversity of ECM fungi was higher in the 5 and 36-year-old stands than in the 11-year-old P. patula stands. Contrary to our expectations, a high level of ECM species diversity was observed in young stands, suggesting that these ECM species could compensate for the effects of nutrient stress in these stands. Our results also suggested that the abundance of plant pathogens and saprotrophs was not affected by stand age. This study provides baseline information about fungal community changes across tree stands of different ages in P. patula plantations in Ethiopia that are likely related to ECM fungi in young stands where relatively low soil fertility prevails. However, given that the plots were established in a single stand for each age class for each treatment, this study should be considered as a case study and, therefore, caution should be exercised when applying the conclusions to other stands.Agencia Española de Cooperación y Desarrollo Internacional - SUSTIFUNGI_ET (Sustfungi_Eth:2017/ACDE/002094)Ministerio de Educación y Cultura - Salvador de Madariaga grant agreement (PRX17/00315

    Neofabraea kienholzii, a novel causal agent of grapevine trunk diseases in Hungary

    Get PDF
    Recently, more and more new fungal pathogens have been described as causal agents of grapevine trunk diseases (GTDs), which lead to increasingly significant economic losses in viticulture worldwide. The genus Neofabraea consists of species mainly known as important plant pathogens causing perennial canker and bull’s eye rot, a common postharvest disease of apple (Malus domestica) and pear (Pyrus communis) fruits. Neofabraea kienholzii also causes lesions on pome fruits and canker on woody tissues, but its pathogenicity has not been demonstrated on grapevine yet. In 2015, two strains, identified as N. kienholzii based on ITS sequence data, were isolated from vines showing symptoms of GTDs in Hungary. For an unambiguous taxonomic placement of the isolates, four loci (ITS, LSU, TUB2 and RPB2) were amplified and sequenced. The phylogenetic analysis confirmed that the two isolates represent N. kienholzii. Pathogenicity tests performed on potted grapevines, shoots, and canes confirmed the virulence of these fungi. Their growth and sporulation on different media were also investigated. To the best of our knowledge, this is the first proof of N. kienholzii might cause symptoms on Vitis and might have a role in GTDs

    Botrytis cinerea causes different plant responses in grape (Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence

    Get PDF
    The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot
    corecore