5 research outputs found

    Impact of physical exercise on metabolic dysfunction-associated fatty liver disease (MAFLD)

    Get PDF
    Obesity is a chronic multifactorial disease characterized by excess adiposity. Adipose tissue hypertrophy favors lipid deposition in ectopic tissues, such as the liver, which favors the development of the metabolic dysfunction-associated fatty liver disease (MAFLD), characterized by excessive accumulation of lipids in the cytoplasm of hepatocytes (fatty liver). Triglyceride overload in hepatocytes observed in obesity is associated with inflammation and insulin resistance status. Non-pharmacological strategies, such as the practice of physical exercise, seem to be an effective in reducing inflammatory markers and improving insulin sensitivity in obese individuals with MAFLD attenuating hepatocellular steatosis. Thus, this review aims to demonstrate the factors involved in the development of hepatic steatosis, as well as investigate the impact of physical exercise on insulin sensitivity and inflammatory markers in the condition of obesity-associated MAFLD

    High-Fat Diet-Induced Obesity Model Does Not Promote Endothelial Dysfunction via Increasing Leptin/Akt/eNOS Signaling

    Get PDF
    Experimental studies show that the unsaturated high-fat diet-induced obesity promotes vascular alterations characterized by improving the endothelial L-arginine/Nitric Oxide (NO) pathway. Leptin seems to be involved in this process, promoting vasodilation via increasing NO bioavailability. The aim of this study was to test the hypothesis that unsaturated high-fat diet-induced obesity does not generate endothelial dysfunction via increasing the vascular leptin/Akt/eNOS signaling. Thirty-day-old male Wistar rats were randomized into two groups: control (C) and obese (Ob). Group C was fed a standard diet, while group Ob was fed an unsaturated high-fat diet for 27 weeks. Adiposity, hormonal and biochemical parameters, and systolic blood pressure were observed. Concentration response curves were performed for leptin or acetylcholine in the presence or absence of Akt and NOS inhibitor. Our results showed that an unsaturated high-fat diet promoted a greater feed efficiency (FE), elevation of body weight and body fat (BF), and an adiposity index, characterizing a model of obesity. However, comorbidities frequently associated with experimental obesity were not visualized, such as glucose intolerance, dyslipidemia and hypertension. The evaluation of the endothelium-dependent relaxation with acetylcholine showed no differences between the C and Ob rats. After NOS inhibition, the response was completely abolished in the Ob group, but not in the C group. Furthermore, Akt inhibition completely blunted vascular relaxation in the C group, but not in the Ob group, which was more sensitive to leptin-induced vascular relaxation. L-NAME incubation abolished the relaxation in both groups at the same level. Although Akt inhibitor pre-incubation reduced the leptin response, group C was more sensitive to its effect. In conclusion, the high-unsaturated fat diet-induced obesity improved the vascular reactivity to leptin and does not generate endothelial dysfunction, possibly by the increase in the vascular sensitivity to leptin and increasing NO bioavailability. Moreover, our results suggest that the increase in NO production occurs through the increase in NOS activation by leptin and is partially mediated by the Akt pathway

    Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity

    No full text
    <div><p>Abstract Background: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. Objective: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. Methods: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each): control (C; standard diet) and high-fat diet (HF, unsaturated high-fat diet). The initial moment of obesity was defined by weekly measurement of body weight (BW) complemented by adiposity index (AI). Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. Results: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%), body fat (20%), AI (14.5%), insulin levels (39.7%), leptin (62.4%) and low-density lipoprotein cholesterol (15.5%) but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05). In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. Conclusion: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.</p></div
    corecore