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ABSTRACT  

Obesity is a chronic multifactorial disease characterized by excess adiposity. Adipose 

tissue hypertrophy favors lipid deposition in ectopic tissues, such as the liver, which 

favors the development of the metabolic dysfunction-associated fatty liver disease 

(MAFLD), characterized by excessive accumulation of lipids in the cytoplasm of 

hepatocytes (fatty liver). Triglyceride overload in hepatocytes observed in obesity is 

associated with inflammation and insulin resistance status. Non-pharmacological 

strategies, such as the practice of physical exercise, seem to be an effective in reducing 

inflammatory markers and improving insulin sensitivity in obese individuals with 

MAFLD attenuating hepatocellular steatosis. Thus, this review aims to demonstrate the 

factors involved in the development of hepatic steatosis, as well as investigate the impact 

of physical exercise on insulin sensitivity and inflammatory markers in the condition of 

obesity-associated MAFLD. 

 

Keywords: obesity, fatty liver, inflammation, insulin resistance, exercise. 

 

RESUMO 

A obesidade é uma doença crônica multifatorial caracterizada pelo excesso de 

adiposidade. A hipertrofia do tecido adiposo favorece a deposição de lipídios em tecidos 

ectópicos, como o fígado, o que favorece o desenvolvimento da doença hepática 

gordurosa associada à disfunção metabólica (DHGAM), caracterizada pelo acúmulo 

excessivo de lipídios no citoplasma dos hepatócitos (fígado gorduroso). A sobrecarga de 

triglicerídeos nos hepatócitos observada na obesidade está associada à inflamação e ao 

estado de resistência à insulina. Estratégias não farmacológicas, como a prática de 

exercício físico, parecem ser eficazes na redução de marcadores inflamatórios e na 

melhora da sensibilidade à insulina em obesos com DHGAM, atenuando a esteatose 

hepatocelular. Assim, esta revisão tem como objetivo demonstrar os fatores envolvidos 

no desenvolvimento da esteatose hepática, bem como investigar o impacto do exercício 

físico na sensibilidade à insulina e nos marcadores inflamatórios na condição de DHGAM 

associada à obesidade. 

 

Palavras-chave: obesidade, fígado gorduroso, inflamação, resistência à insulina, 

exercício. 

 

 

1 INTRODUCTION 

Obesity is a chronic multifactorial disease characterized by excess adiposity. It is 

explained by hypercaloric food intake and physical inactivity, which negatively affects 

health1. According to the World Health Organization, the incidence of obesity increases 

every year. Currently, its prevalence represents almost three times the number of cases 
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since 1975. In 2016, obesity among adults over 18 years of age accounted for 13% of the 

world’s population, corresponding to 650 million individuals inserted in 1.9 billion 

overweight adults in the same age group2. Obesity is characterized mainly by cellular 

hypertrophy, which favors lipid deposition in non-adipose or ectopic tissues, a result of 

limited capacity of subcutaneous lipid storage adipose tissue3. Ectopic adiposity is related 

to lipotoxicity in muscle, pancreatic, and hepatic tissue4, favoring chronic metabolic 

diseases, such as metabolic dysfunction-associated fatty liver disease (MAFLD)5, also 

known as non-alcoholic fatty liver disease (NAFLD)6. 

Responsible for the prevalence of cases of chronic liver disease7, MAFLD is 

characterized by morphophysiological alteration in the liver, resulting from excessive 

accumulation of lipids in the cytoplasm of hepatocytes (fatty liver)8. Liver disease affects 

a quarter of the world’s adult population6 and is strongly associated with obesity. Authors 

point out that MAFLD is present in approximately 70% of overweight individuals and 

between 90 and 95% of those with morbid obesity9. 

Obesity associated with MAFLD has the potential to stimulate inflammatory 

pathways and oxidative stress. Hypertrophy of adipose tissue promotes the release of pro-

inflammatory cytokines, which act on liver cells, limiting their regeneration capacity, 

which is hampered by cell damage resulting from the steatosis10. Insulin resistance (IR) 

is also linked to the pathogenesis of steatosis, since it predisposes the release of free fatty 

acids (FFA), followed by hyperinsulinemia resulting from this and the consumption of 

high energy diets, promoting the accumulation of lipids in the liver tissue10,11. Sedentary 

lifestyle and hypercaloric diet intake are linked to increased adiposity and IR12. 

Non-pharmacological strategies, such as the practice of physical exercise, have 

been used to improve IR13 and inflammatory markers14. Authors relate the potential of 

physical exercise to the property of reducing ectopic fat deposition in liver tissue15–18. 

Cotrim et al.19 (2016) suggest that physical exercise contributes to reduction of 

intrahepatic fat and points out that aerobic or resistance training can be effective; 

however, there is little evidence about the impact of exercise on inflammation and insulin 

sensitivity to confirm the absence or effectiveness of benefits for the condition of obesity-

associated MAFLD. Thus, the current study aims to identify the factors involved in this 

process, as well as investigate the impact of exercise training on insulin sensitivity and 

inflammatory markers in the condition of obesity-associated MAFLD. 
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2 METABOLIC DYSFUNCTION-ASSOCIATED FATTY LIVER DISEASE 

Fatty liver can be classified by excessive and chronic consumption of alcoholic 

beverages or arising from other risk factors. Until recently, the diagnosis of NAFLD 

should cover hepatocellular steatosis greater than 5% of the hepatic parenchyma20 and 

express disconnection with alcoholism or secondary causes21, such as medication and 

some syndromes22. Presently new criteria for the diagnostic of MAFLD include evidence 

of fat accumulation in the liver, which may be by biopsy, imaging or blood biomarker 

and present one of the three requirements, namely overweight/obesity, presence of type 

2 diabetes mellitus (T2DM), or evidence of metabolic dysregulation6. 

Liver disease integrates isolated steatosis, nonalcoholic steatohepatitis (NASH), 

and its progressions20 (Figure 1). In isolated steatosis, there is lipid accumulation that 

extends through the tissue23, its progression to NASH represents about 20% of patients. In 

NASH, there is the presence of steatosis, lobular inflammation, and lesions in hepatocytes 

(ballooning) and may also present fibrosis and evolve to cirrhosis and hepatocellular 

carcinoma. It is estimated that NASH may progress to fibrosis and cirrhosis in 

approximately 40% and 20% of affected patients, respectively24,25. In addition, 

individuals with NASH have a 12-fold annual rate of hepatocellular carcinoma than 

patients with isolated steatosis24. Hepatocellular carcinoma is a malignant tumor26 that 

can progress from both cirrhotic and non-cirrhotic NASH27. However, little is known 

about the mechanisms that lead to progression26; it is believed that pro-inflammatory 

status, IR, and lipotoxicity may be associated27. 

 

Figure 1. Progression of MAFLD. In MAFLD, hepatic steatosis may progress to the condition of NASH, 

a condition related to inflammatory process and fibrosis, which has a high predisposition to more 

degenerative conditions, such as cirrhosis and HCC. NASH: non-alcoholic steatohepatitis; HCC: 

hepatocellular carcinoma 

 
Source: Author 

 

3 METABOLIC DYSFUNCTION-ASSOCIATED FATTY LIVER DISEASE AND 

OBESITY 

The pathogenesis of obesity is complex, and there are several conditions involved 

in its causality and persistence, such as genetic and epigenetic factors, hypercaloric food 

intake, and low energy expenditure, among others28. The increased availability and 
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accessibility to hypercaloric foods, added to the decrease in the practice of physical 

exercises, are factors of potential increase for the gain of adiposity1, since they are 

important determinants of the energy balance29. 

In obesity, there is a marked increase in this tissue of adipocytes hypertrophy and 

hyperplasia30, which are structural constituents of adipose tissue (AT) responsible for fat 

storage in the form of triglycerides. In this context, it is known that adipocytes have an 

expansive limit, which favors the fat deposition in ectopic tissues31, contributing to the 

onset of MAFLD32. 

Several factors may be involved in the pathophysiology of MAFLD. Obesity is 

presented as an independent risk factor for triglyceride deposition in hepatocytes33. The 

underlying constraints are not yet fully understood34, but it is believed the deposition of 

triglycerides in liver tissue may come from diet fat derived from intestinal kilomicrons, 

circulating FFA from the lipolysis of AT, de novo hepatic lipogenesis, from the reduction 

of lipid oxidation, and by secretion of triglycerides by the liver35. The mechanisms 

involved in the association between obesity and MAFLD are specific33, since the MAFLD 

pathophysiology also involves a complex interaction between its determinants36. The 

triglyceride overload in hepatocytes observed in obesity conditions favor the state of 

lipotoxicity37. Lipotoxicity is due to the imbalance between the content and hepatic 

degradation of triglycerides; this process promotes an influx of FFA into hepatocytes38. 

In addition, the pathophysiology of MAFLD may be associated with IR and the 

action of pro-inflammatory mediators39,40. 

 

4 OBESITY, INFLAMMATION, AND METABOLIC DYSFUNCTION-

ASSOCIATED FATTY LIVER DISEASE 

The expansiveness of AT promotes infiltration of immune cells and secretion of 

cytokines that are associated with reduced insulin sensitivity41. Thus, individuals less 

sensitive to the action of insulin are characterized by presenting lower functionality and 

greater size of adipocytes, lower subcutaneous AT, and greater accumulation of visceral 

fat in skeletal muscle and liver, with a consequent increase in inflammatory potential42. 

Under the action of immune cells, the inflammation is characterized as a physiological 

response to pathological aggressors and cellular damage43; thus, the balance of the 

immune response is related to functional regulation of AT. AT is associated with 

activation of macrophages that act on cytokine production and secretion30. Chronic 
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inflammation promotes increased signaling and release of pro-inflammatory cytokines, 

such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (1L-6), and 

interleukin-8 (IL-8)44, associated with decreased insulin sensitivity and adiponectin 

levels30,44. 

In addition to increased pro-inflammatory adipokines, studies have shown that 

adiponectin reduction occurs in the presence of hypertrophic adipocytes30,45. Under 

normal conditions, it is associated with reduced lipogenesis, which stimulates the 

oxidation of fatty acids, inhibiting its deposition in liver tissue46. In the liver, adiponectin 

receptor 1 (AdipoR1) stimulates the activity of the adenosine monophosphate-activated 

protein kinase (AMPK)47, a protein associated with hepatic autophagy activation48, where 

lipids accumulated in hepatocytes are degraded49. However, obesity and IR models 

presented lower liver autophagy and with this, reduction of lipid oxidation50. 

In obesity, FFA released by AT, pro-inflammatory cytokines, and pathogen-

associated molecular patterns (PAMPs) act in a cascade of inflammatory signaling, which 

begins with binding to their respective membrane receptors. These bonds allow the 

activation of inflammatory pathways, such as the enzymes c-jun N-terminal kinase (JNK) 

and IkB kinase (IkK) and the mammalian target of rapamycin complex 1 (mTORC1), to 

which they recruit the following molecules, activating protein 1 (AP-1), nuclear factor 

kappa B (NF-κB), and S6 kinase (S6K), respectively51. Thus, the respective molecules 

act in inhibiting phosphorylation of the insulin receptor 1 (IRS-1), contributing to non-

glucose uptake and the state of hepatic IR51,52, which is associated with fat deposition in 

hepatocytes53 (Figure 2). In addition, a JNK activation can also activate NF-κB54, which 

acts on pancreatic islet dysfunction, while also being related to greater macrophage 

expression by AT and new production of pro-inflammatory cytokines55. 
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Figure 2. Potential inflammatory mechanisms involved in insulin resistance condition. FFA: free fatty 

acids; PAMPs: pathogen-associated molecular patterns; TLR4: toll-like receptor 4; JNK: c-jun N-terminal 

kinase; IkK: IkB kinase; mTORC1: mammalian target of rapamycin complex 1; AP-1: activator protein 1; 

NF-kB: nuclear factor kappa B; S6K: kinase S6; IRS-1: insulin receptor 1. 

 
Source: Adapted from Asrih & Jornayvaz, 201551. 

*Reprinted with permission from Elsevier (License number: 5104900218575). 

 

Although it is well known that inflammatory cytokines originate mainly in AT, 

other tissues, such as the liver and pancreas, are target organs of the inflammatory 

process56. Thus, chronic inflammation in obesity promotes various comorbidities, 

including MAFLD10. 

 

5 OBESITY, INSULIN RESISTANCE, AND METABOLIC DYSFUNCTION-

ASSOCIATED FATTY LIVER DISEASE 

Insulin is an anabolic hormone secreted by pancreatic β cells, which among its 

functions responds to glucose, protein, and lipid metabolism57. The insulin signaling 

pathway involves a series of phosphorylations, which begin with extracellular signaling 

of insulin to its membrane receptor, IRS-158. Therefore, phosphorylation of 

phosphatidylinositol 3-kinase protein (PI3K) occurs, followed by phosphorylation of 

phosphatidylinositol 4,5-biphosphate (PIP2) in phosphatidylinositol 3,4,5-triphosphate 

(PIP3), leading to the recruitment of phosphoinositide-dependent kinase 1 (PDK1) and 

protein kinase B (Akt), which act directly on glucose uptake by translocating the glucose 

transporter to the plasma membrane59. 

https://pubmed.ncbi.nlm.nih.gov/?term=Asrih+M&cauthor_id=25724480
https://pubmed.ncbi.nlm.nih.gov/?term=Jornayvaz+FR&cauthor_id=25724480
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Physiologically, insulin production occurs according to food intake or by 

hormonal, neural, and humoral stimulus57. Under IR conditions, the β cells are stimulated 

to produce a greater amount of the hormone in order to compensate for the defect in 

glucose uptake60. In lipid metabolism, IR promotes increased AT lipolysis61 and synthesis 

of new fatty acids. FFA, if not oxidized, can cause cellular damage and lipotoxicity when 

absorbed by ectopic tissues62. The IR condition acts on the activity of AT lipases, 

responsible for the breakdown of triglycerides. Overactivation of the hormone-sensitive 

lipase (HSL) occurs, favoring greater release of FFA, which can later be reabsorbed by 

the liver63. The state of hyperinsulinemia present in IR acts on that of de novo hepatic 

lipogenesis53, a pathway that synthesizes fatty acids from the catabolism of ingested 

carbohydrates in excess64. 

In obese patients with MAFLD and hyperinsulinemia, 26% of hepatic lipid 

accumulation comes from de novo lipogenesis11. The de novo hepatic lipogenesis is 

regulated by transcriptional factors; thus, the most important factor for lipid synthesis is 

the sterol regulatory element binding protein 1c (SREBP-1c), regulated by insulin63. In 

the insulin signaling pathway, the mammalian target of rapamycin complex 2 (mTORC2) 

phosphorylates the Akt then there is activation of the mTORC1; this protein activates the 

ribosomal protein S6 kinase beta-1 (S6K1), promoting nuclear location of the liver X 

receptor-α (LXRα), heterodimerization with retinoid X receptor (RXR), and transcription 

of SREBP-1c. After synthesizing in the endoplasmic reticulum, the factor SREBP-1c is 

associated with SREBP cleavage activated protein (SCAP) and the insulin-induced gene 

1 (INSIG1). When phosphorylated, INSIG1 dissociation occurs, and the SREBP-1c-

SCAP complex is transported to the Golgi complex, the site in which the dissociation of 

the SCAP and removal of transmembrane domain occurs, enabling the input of the factor 

to the cell nucleus. In the nucleus, mature SREBP-1c promotes transcription of lipogenic 

genes, including fatty acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), 

elongation of long-chain fatty acids family member 6 (ELOVL6), and acetyl coenzyme 

A carboxylase (ACC)63,64 (Figure 3). 

In addition to transcription factor SREBP-1c, the regulation de novo lipogenesis 

may occur by the action of the carbohydrate response element binding protein (ChREBP), 

stimulated by hepatic glucose. It is suggested that, when entering the hepatocytes through 

glucose transporter 2 (GLUT-2) and starting their degradation process, the products of 

their phosphorylation, glucose 6-phosphate, fructose 6-phosphate, and fructose-2,6-
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biphosphate, lead to ChREBP dephosphorylation and dissociation from the cytosolic 

protein 14-3-3 thus facilitating the localization of the factor in the cell nucleus and 

enabling the transcription of the lipogenic genes mentioned above64 (Figure 3). 

 

Figure 3. Signaling pathways for activation of hepatic lipogenic genes in the state of hyperinsulinemia 

and hyperglycemia. IRS-1: insulin receptor 1; PI3K: phosphoinositide 3-kinase; PIP2: 

phosphatidylinositol (4,5)-bisphosphate; PIP3: phosphatidylinositol (3,4,5)-trisphosphate; PDK1: 

phosphoinositide-dependent kinase 1; Akt: protein kinase B; mTORC1: mammalian target of rapamycin 

complex 1; mTORC2: mammalian target of rapamycin complex 2; S6K1: ribosomal protein S6 kinase 

beta-1; LXR: liver X receptor α; RXR: retinoid X receptor; SREBP-1c: sterol regulatory element binding 

protein 1c; SCAP: SREBP cleavage activated protein; INSIG1: insulin-induced gene 1; GLUT2: glucose 

transporter 2. G6P: glucose 6-phosphate; F6P: fructose 6-phosphate; F2,6P: fructose-2,6-bisphosphate; 

ChREBP: carbohydrate response element binding protein; 14-3-3: cytosolic protein 14-3-3. 

 
Source: Adapted from Sanders & Griffin, 2016)64. 

 

The state of IR associated with the condition of obesity contributes to increase 

lipogenesis and lipotoxicity of the liver, leading to excessive accumulation of lipids in 

hepatocytes62,63. 
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6 EFFECT OF EXERCISE ON METABOLIC DYSFUNCTION-ASSOCIATED 

FATTY LIVER DISEASE 

6.1 EFFECTS ON INFLAMMATION 

Exercise training plays an important role in regulating inflammation. It is 

associated with reduced expression/activation of JNK/AP-1 and Ikk/NF-κB inflammatory 

pathways65, which are significant contributors to the condition of IR66,67 (Figure 4). In 

addition, physical exercise is also associated with negative regulation of mTORC1/S6K 

pathway signaling (Figure 4), under the action of AMPK, a physiological inhibitor of 

mammalian target of rapamycin (mTOR)68. AMPK, the signaling molecule, is activated 

during exercise in metabolic response to muscle stress69. It is believed that AMPK’s 

action occurs in response to energy consumption during the exercise, inducing signaling 

cascades, as it is mediated by the increase of the endothelial nitric oxide synthase (eNOS) 

enzyme, activation of the mitogen activated protein kinases (MAPK), activation of 

calcium-dependent protein kinase (CaMK), activation of protein kinase C (PKC) or 

hypoxia. AMPK acts on the phosphorylation of TBC1 domain family member 1 

(TBC1D1) and in the subsequent phosphorylation of TBC1D4, which favors the 

dissociation of rab protein and the signaling of glucose transporter 4 (GLUT-4) 

translocation to the membrane70 (Figure 4). During exercise, increased glucose uptake 

may occur through an insulin-independent route71. 
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Figure 4. Possible effects of exercise on MAFLD attenuation. JNK: c-jun N-terminal kinase; AP-1: 

activator protein 1; IkK: IkB kinase; NF-kB: nuclear factor kappa B; mTORC1: mammalian target of 

rapamycin complex 1; S6K: kinase S6; IRS-1: insulin receptor 1; ACC: acetyl coenzyme A carboxylase; 

Malonyl CoA: malonyl coenzyme A; FA: fatty acid; AMPK: adenosine monophosphate-activated protein 

kinase; TBC1D1: TBC1 domain family member 1; TBC1D4: TBC1 domain family member 4; Rab-GTP: 

rab-GTP protein; GLUT-4: glucose transporter 4; MAFLD: metabolic dysfunction-associated fatty liver 

disease. 

 
Source: Author 

 

6.2 EFFECTS ON INSULIN SENSITIVITY 

The effect of exercise on the improvement of insulin sensitivity can be observed 

at its maximum, 3–4 h after the training session71 and may still be evident up to 72 h and 

absent within 5 days72,73. In a review conducted by Bird and Hawley73 (2017), a positive 

effect on the reduction of IR was observed in obese individuals who practiced moderate 

aerobic exercise for 30 min, 3 days a week, for 8 weeks73. On the other hand, exercises 

with high intensity, interspersed with periods of low intensity, were also positively 

associated74. Corroborating the results, a study conducted by Kraus et al.75 (2001) showed 

that both moderate intensity exercise (40%–55% VO2max) and high intensity (60%–75% 

VO2max) exercise for 8 months had benefits in the condition of IR75. Although, a review 

study conducted in 2016 suggested that moderate intensity exercise appears to be more 

effective compared to high intensity exercise76. 
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In addition, when assessing the effectiveness of exercise in improving insulin 

sensitivity, a review conducted in 2012, including a total of 42 studies, suggested that the 

reduction of IR occurred regardless of changes in body adiposity, especially when in high 

intensity exercises77. With regard to the type of exercise, both aerobic and strength 

training seem to be effective74. Moreover, in the condition of improvement of IR, the 

physical exercise is related to activation of the oxidation pathway and inhibition of de 

novo lipogenesis69, regardless of the type of exercise78. 

 

6.3 EFFECTS ON REGULATION OF HEPATIC LIPID METABOLISM 

In response to exercise, the regulation of hepatic lipid metabolism may occur by 

increased phosphorylation of ACC, promoting a reduction in the formation of malonyl 

coenzyme A (malonyl-CoA), increasing the β-oxidation of fatty acids in the tricarboxylic 

acid cycle (TCA)18. Considering the lipogenesis process, exercise may promote lower 

expression of FAS enzyme and ACC content79. In addition, there is an improvement in 

autophagy during exercise80, where lipids accumulated in hepatocytes are absorbed by 

autophagosomes and degraded49. Obesity, accompanied by the condition of IR, was 

associated with decreased hepatic autophagy in models susceptible to liver disease. 

Impairments in autophagy promote decreased β-oxidation and increased lipid deposits in 

hepatocytes50 (Figure 4). 

 

6.4 EFFECTS ON ATTENUATION OF METABOLIC DYSFUNCTION-

ASSOCIATED FATTY LIVER DISEASE 

Studies point to the positive effect of exercise on attenuation of MAFLD15–17. 

Moderate-intensity aerobic exercise reduced intrahepatic fat81–83 and reduced IR in 

subjects with suspected or confirmed diagnosis of MAFLD82,83. On the other hand, high-

intensity aerobic exercise was also associated with reduced liver fat content in prediabetic 

individuals with MAFLD84. Study published in 2019 showed that high intensity interval 

aerobic exercise was able to reduce intrahepatic triglycerides, visceral lipids, and IR in 

obese diabetic individuals with liver disease85. Similarly, studies conducted in obese 

individuals with MAFLD have shown that both high-intensity aerobic exercise and 

moderate intensity exercise significantly reduced steatosis15,86,87; this reduction is not 

associated with changes in body mass and adiposity15. 
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Regarding the type of exercise, both high-intensity strength and aerobic training 

were effective in reducing steatosis and IR, and these changes were also independent of 

weight loss16. Patients with NASH who underwent moderate to vigorous aerobic exercise, 

combined with strength training, presented reduction of intrahepatic and plasma 

triglycerides and visceral fat88. Similarly, high-intensity aerobic exercise and strength 

training, combined or isolated, were also effective in reducing steatosis and IR17. 

Although, a study conducted by Franco et al.89 (2019) concluded that moderate aerobic 

exercise alone was more effective in reducing the grade of the liver disease when 

compared to aerobic combined with strength training in individuals with MAFLD. 

There is evidence as to the positive relationship between exercise and MAFLD; 

however, there is no consensus as to the recommended duration, frequency, and type of 

exercise19,20,90. 

 

7 CONCLUSION 

The findings show that exercise is an effective tool in reducing the inflammation 

and improving the insulin sensitivity in obese individuals with MAFLD. The main 

signaling pathways described involve the inhibition of JNK/AP-1, Ikk/NF-κB, and 

mTORC1/S6K, as well as AMPK activation. Although there is an effect, 

recommendations regarding the exercise protocol need to be elucidated. 
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