5 research outputs found

    Chronic alcohol administration alters metabolomic profile of murine bone marrow

    Get PDF
    IntroductionPeople with hazardous alcohol use are more susceptible to viral, bacterial, and fungal infections due to the effect of alcohol on immune system cell function. Metabolized ethanol reduces NAD+ to NADH, affecting critical metabolic pathways. Here, our aim was to investigate whether alcohol is metabolized by bone marrow cells and if it impacts the metabolic pathways of leukocyte progenitor cells. This is said to lead to a qualitative and quantitative alteration of key metabolites which may be related to the immune response.MethodsWe addressed this aim by using C57BL/6 mice under chronic ethanol administration and evaluating the metabolomic profile of bone marrow total cells by gas chromatography–coupled mass spectrometry (GC–MS).ResultsWe identified 19 metabolites. Our data demonstrated that chronic ethanol administration alters the metabolomic profile in the bone marrow, resulting in a statistically diminished abundance of five metabolites in ethanol-treated animals: uracil, succinate, proline, nicotinamide, and tyrosine.DiscussionOur results demonstrate for the first time in the literature the effects of alcohol consumption on the metabolome content of hematopoietic tissue and open a wide range of further studies to investigate mechanisms by which alcohol compromises the cellular function of the immune system

    Age-Related Metabolic Pathways Changes in Dental Follicles: A Pilot Study

    Get PDF
    Aging is not a matter of choice; it is our fate. The “time-dependent functional decline that affects most living organisms” is coupled with several alterations in cellular processes, such as cell senescence, epigenetic alterations, genomic instability, stem cell exhaustion, among others. Age-related morphological changes in dental follicles have been investigated for decades, mainly motivated by the fact that cysts and tumors may arise in association with unerupted and/or impacted teeth. The more we understand the physiology of dental follicles, the more we are able to contextualize biological events that can be associated with the occurrence of odontogenic lesions, whose incidence increases with age. Thus, our objective was to assess age-related changes in metabolic pathways of dental follicles associated with unerupted/impacted mandibular third molars from young and adult individuals. For this purpose, a convenience sample of formalin-fixed paraffin-embedded (FFPE) dental follicles from young (<16 y.o., n = 13) and adult (>26 y.o., n = 7) individuals was selected. Samples were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based untargeted metabolomics. Multivariate and univariate analyses were conducted, and the prediction of altered pathways was performed by mummichog and Gene Set Enrichment Analysis (GSEA) approaches. Dental follicles from young and older individuals showed differences in pathways related to C21-steroid hormone biosynthesis, bile acid biosynthesis, galactose metabolism, androgen and estrogen biosynthesis, starch and sucrose metabolism, and lipoate metabolism. We conclude that metabolic pathways differences related to aging were observed between dental follicles from young and adult individuals. Our findings support that similar to other human tissues, dental follicles associated with unerupted tooth show alterations at a metabolic level with aging, which can pave the way for further studies on oral pathology, oral biology, and physiology

    Deregulation of desmosomal proteins and extracellular matrix proteases in odontogenic keratocyst

    No full text
    OBJECTIVE : Odontogenic keratocyst (OKC) is a benign lesion that tends to recur after surgical treatment. In an attempt to clarify the molecular basis underlining the OKC pathobiology, we aimed to analyze its proteomic profile. MATERIALS AND METHODS : We compared the proteomic profiles of five OKC and matched normal oral mucosa by using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Then, we performed enrichment analysis and a literature search for the immunoexpression of the proteomics targets. RESULTS : We identified 1,150 proteins and 72 differently expressed proteins (log2 fold change ≥ 1.5; p < .05). Twenty-seven peptides were exclusively detected in the OKC samples. We found 35 enriched pathways related to cell differentiation and tissue architecture, including keratinocyte differentiation, keratinization, desmosome, and extracellular matrix (ECM) organization and degradation. The immunoexpression information of 11 out of 50 proteins identified in the enriched pathways was obtained. We found the downregulation of four desmosomal proteins (JUP, PKP1, PKP3, and PPL) and upregulation of ECM proteases (MMP-2, MMP-9, and cathepsins). CONCLUSIONS : Proteomic analysis strengthened the notion that OKC cells have a similar proteomic profile to oral keratinocytes. Contextual investigation of the differentially expressed proteins revealed the deregulation of desmosome proteins and ECM degradation as important alterations in OKC pathobiology.Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.http://www.wileyonlinelibrary.com/journal/odihj2022Oral Pathology and Oral Biolog

    Evaluation of three recombinant proteins for the development of ELISA and immunochromatographic tests for visceral leishmaniasis serodiagnosis

    Get PDF
    BACKGROUND Visceral Leishmaniasis (VL) is an infectious disease that is a significant cause of death among infants aged under 1 year and the elderly in Brazil. Serodiagnosis is a mainstay of VL elimination programs; however, it has significant limitations due to low accuracy. OBJECTIVE This study aimed to evaluate three recombinant Leishmania infantum proteins (rFc, rC9, and rA2) selected from previous proteomics and genomics analyses to develop enzyme-linked immunosorbent assay (ELISA) and immunochromatographic tests (ICT) for the serodiagnosis of human VL (HVL) and canine VL (CVL). METHODS A total of 186 human (70 L. infantum-infected symptomatic, 20 other disease-infected, and 96 healthy) and 185 canine (82 L. infantum-infected symptomatic, 27 L. infantum-infected asymptomatic, and 76 healthy) sera samples were used for antibody detection. FINDINGS Of the three proteins, rA2 (91.5% sensitivity and 87% specificity) and rC9 (95.7% sensitivity and 87.5% specificity) displayed the best performance in ELISA-HVL and ELISA-CVL, respectively. ICT-rA2 also displayed the best performance for HVL diagnosis (92.3% sensitivity and 88.0% specificity) and had high concordance with immunofluorescence antibody tests (IFAT), ELISA-rK39, IT-LEISH®, and ELISAEXT. ICT-rFc, ICT-rC9, and ICT-rA2 had sensitivities of 88.6%, 86.5%, and 87.0%, respectively, with specificity values of 84.0%, 92.0%, and 100%, respectively for CVL diagnosis. MAIN CONCLUSIONS The three antigens selected by us are promising candidates for VL diagnosis regardless of the test format, although the antigen combinations and test parameters may warrant further optimisation
    corecore