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Introduction: People with hazardous alcohol use are more susceptible to viral,

bacterial, and fungal infections due to the effect of alcohol on immune system

cell function. Metabolized ethanol reduces NAD+ to NADH, affecting critical

metabolic pathways. Here, our aim was to investigate whether alcohol is

metabolized by bone marrow cells and if it impacts the metabolic pathways of

leukocyte progenitor cells. This is said to lead to a qualitative and quantitative

alteration of key metabolites which may be related to the immune response.

Methods: We addressed this aim by using C57BL/6 mice under chronic ethanol

administration and evaluating themetabolomic profile of bonemarrow total cells

by gas chromatography–coupled mass spectrometry (GC–MS).

Results: We identified 19 metabolites. Our data demonstrated that chronic

ethanol administration alters the metabolomic profile in the bone marrow,

resulting in a statistically diminished abundance of five metabolites in ethanol-

treated animals: uracil, succinate, proline, nicotinamide, and tyrosine.

Discussion: Our results demonstrate for the first time in the literature the effects

of alcohol consumption on the metabolome content of hematopoietic tissue

and open a wide range of further studies to investigate mechanisms by which

alcohol compromises the cellular function of the immune system.
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1 Introduction

Alcohol use disorder (AUD) is characterized by an impaired ability

to stop or control alcohol use, despite adverse social, occupational, or

health consequences. AUD is one of the most common psychiatric

disorders and is a leading cause of mortality worldwide (1).

Considerable evidence indicates that alcohol abuse results in

clinical abnormalities of the immune system (2, 3). Hematopoietic

stem cells differentiate into myeloid progenitor cells, which are the

precursor cells of granulocytes, the major type of phagocyte,

constituting the front line of innate immune defense (4, 5).

Multiple lines of clinical and experimental evidence

demonstrate that chronic alcohol consumption is linked to

increased risks of infections, such as pneumonia. This effect has

been related to alcohol’s effect on the immune system (6, 7), such as

alterations in the production of bone marrow immune cells and

impairment of their effector functions (3, 5).

Although there is a vast literature describing the effect of alcohol

on the immune system (2, 3), there is a limitation in our

understanding of the effect of alcohol on the bone marrow, and it

is not known whether the cells of this system are affected by alcohol

in the bloodstream or if this deleterious effect occurs inside the bone

marrow microenvironment.

The majority of ingested alcohol is metabolized in the liver by

hepatocytes, but immune cells such as macrophages and

neutrophils can also metabolize it (8). Regardless of cell type,

alcohol metabolism involves the action of alcohol dehydrogenase

(ADH) and aldehyde dehydrogenase (ALDH2). The ADH enzyme

is present in the cytoplasm of cells and is responsible for the

oxidation reaction of ethanol that results in acetaldehyde. ADH2

is present in the mitochondria and converts acetaldehyde to acetate.

These reactions involve the reduction of nicotinamide adenine

dinucleotide (NAD+) to NADH, increasing the NADH : NAD+

ratio, and leading to a cellular environment vulnerable to damages

caused by metabolites and adducts from ethanol metabolism and

reactive oxygen species (ROS) (9).

The NADH : NAD+ ratio is an important parameter for the

maintenance of several metabolic enzymes, and its disbalance is known

to disturb cell metabolism (10), such as decreased glycolysis (11),

decreased Krebs cycle (12, 13), and decreased gluconeogenesis (13, 14).

Immune cells have distinct metabolic configurations that allow

them to balance energy demands and molecular biosynthesis.

However, beyond that, it is now becoming clear that cellular

metabolism has direct roles in regulating immune cell function,

and disturbances in these metabolic configurations limit

the functionality of these cel ls (15–17). The field of

immunometabolism has advanced our understanding of how cell

metabolism plays a central role in cell function, such as

phagocytosis, ROS production, cell differentiation/maturation,

and consequent host defenses (18–20).

In this study, we applied a metabolomic approach using gas

chromatography–mass spectrometry (GC–MS) to characterize

metabolic changes in the bone marrow microenvironment to test

the hypothesis that alcohol could change metabolic pathways in the

bone marrow and leukocyte progenitor cells, leading to a qualitative
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and quantitative alteration of metabolites that may be directly or

indirectly related to the immune response.

We obtained a snapshot of the distinct changes in the

metabolite composition of bone marrow cellular content in mice

chronically exposed to ethanol. The identified metabolites suggest

that chronic alcohol consumption would disrupt several metabolic

pathways, such as glycolysis, the Krebs cycle, and amino acid

synthesis, that could interfere with immune cell function.

Our results represent the first step toward understanding the

dysfunction of the immune system due to alcohol consumption

because of bone marrow microenvironment alteration of

metabolite content.

2 Methods

2.1 Ethics statement and mouse model of
chronic ethanol consumption

Animal experiments received approval from the Animal Ethics

Committee (CEUA) of the Universidad Federal de Minas Gerais

(UFMG), Brazil (Protocol 337/2018), which is in accordance with

Brazilian guidelines (CONCEA) and international standards. Six-

week-old male C57BL/6J mice were divided into EtOH and H2O

groups and maintained in specific pathogen-free conditions.

Animals in the EtOH group received ethanol at a rate of 5% (v/v)

in the first week, followed by 10% (v/v) in the second week, and

were treated for 10 weeks with 20% (v/v) of ethanol in their

drinking water. The H2O group received water. This model,

standardized by Yeligar et al. (21), generates similar blood alcohol

levels to those observed in humans under chronic consumption.
2.2 Sample preparation for flow cytometry

Bone marrow was harvested from the femurs of six animals in

each group using 0.5% BSA in 1× phosphate buffered saline (PBS).

A sample for the ethanol group was lost during analysis. Total bone

marrow cells were subjected to hypotonic lysis to remove residual

erythrocytes. The samples were filtered in a 40 mm cell strainer,

centrifuged, resuspended in 0.5% BSA in 1× PBS, fixed with 1× PBS

solution containing 4% formaldehyde for 20 min, and then the cells

in 0.5% BSA in 1× PBS were subjected to flow cytometry analysis on

the FACSCanto II cytometer (Becton Dickinson). The relevant

population was gated using accepted criteria for cell complexity

and size, excluding debris and singlets (Supplementary Figure 1).

FSC and SSC plots were assessed using FlowJo software (Tree Star,

Ashland, OR, USA). Graphing and statistical analyses were

performed using GraphPad Prism 8. Differences between different

groups were analyzed by a student t-test.
2.3 Sample preparation for GC–MS

Approximately 3 × 107 total bone marrow cells were obtained

from three animals pooling samples for each group (H2O and
frontiersin.org
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EtOH) (n = 8 pools per group). Bone marrow was harvested from

the femur and tibia using phosphate buffered saline (PBS). Red

blood cells were lysed by osmotic shock. Metabolic quenching was

performed using a cooling bath (dry ice/alcohol), and samples

containing 1 × 107 cells were centrifuged for 10 min at 225g at 4°

C, and the completely dry cell pellet was stored in a −80°C freezer

for further extraction of metabolites.
2.4 Metabolite extraction and
GC–MS system

Metabolite extraction was performed according to

modifications to the protocol described by Canuto et al. (22).

Technical replicates of 1 × 107 bone marrow cells were produced.

Metabolites were extracted with 300 ml of extraction solvent

containing methanol:chloroform:water 1:3:1 (v/v/v) followed by

2 min in a vortex mixer, four cycles of freezing and thawing in

liquid nitrogen, and centrifugation for 10 min at 16,000g at 4°C. The

entire supernatant was transferred to the glass insert and completely

dried in the vacuum concentrator SpeedVac at 35°C.

Methoximation was performed by adding 20 m l of

methoxyamine to pyridine (15 mg/ml). The vials were placed in

an ultrasound bath for 10 s, followed by vigorous vortexing for 10 s.

The samples were then incubated for 90 min at room temperature

and protected from light. For silylation, 20 ml of BSTFA with 1%

TCMS were added. The samples were again subjected to an

ultrasound bath for 10 s, followed by vigorous vortexing for 10 s.

The reaction was processed in a thermostatic bath for 30 min at 40°

C. Finally, 100 ml of heptane containing an internal standard

(methyl tridecanoate) was added to each sample.

Samples, QCs (quality controls), and a blank were derivatized

according to the protocol described above. Samples were analyzed

randomly, and QCs were analyzed at the beginning, every five

samples, and at the end of the analytical sequence.

For the construction of the identification library, data were

corrected for the retention times of hydrocarbon patterns (FAME

MIX). Metabolites detected in the blank were removed from the

final result.

The analyses were performed in a gas chromatography system

(model 5975C, Agilent Technologies) coupled to a quadrupole mass

spectrometer (model 7890A, Agilent Technol). A HP5-MS

column (30 m, 0.25 i.d., 0.25 mm film, 95% dimethyl/5%

diphenylpolysiloxane—Agilent Technologies) was used to

perform the separation of the metabolites. High-purity helium

was used as a mobile phase at a 1 ml/min flow rate. The injector

was maintained at 250°C, and samples were injected with a 1:10

split at 10 ml/min of He. The oven was initially set at 60°C and held

for 1 min, and the temperature increased to 300°C at 10°C/min,

resulting in 25 min of run time.

The MS was operated in scan mode (50–600 m/z). An electron

impact ionization source was placed at −70 eV. Detector transfer

line, source filament, and quadrupole temperatures are maintained

at 290, 230, and 150°C, respectively. Operation and data acquisition

using Qualitative Analysis Mass Hunter B05.00 (Agilent

Technologies) software.
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2.5 GC–MS data processing and
statistical analysis

Raw data were converted to *.mzData in Qualitative Analysis

software (B.05.00, Agilent Technologies), and the profiles were checked

for outlier removal. An optimization of data extraction and processing

parameters was performed using the IPO package (isotopologue

parameter optimization, version 1.16.0), using QC samples to find

the best conditions. Data processing was performed in XCMS software

(version 1.24.1) running on the R platform (version 3.2.3, R Core

Team). The optimized parameters were as follows: “Matched Filter”

method for peak detection using peak width (fwhm) = 7.2, signal/noise

ratio (snthresh) = 1.0, minimum difference between m/z’s for

overlapping peaks (mzdiff) = 0.36, and maximum number of peaks

per extracted ion chromatogram (max) = 5. The grouping step used

bandwidth correction (bw) = 0.9, width of overlapping bands of m/z

(mzwid) = 0.061, minimum number of samples needed in at least one

of the sample groups to be a valid group (minsamp) = 1, minimum

fraction of detected samples (minfrac) = 0.5, and maximum number of

peaks per extracted ion chromatogram (max) = 50 (in the first and

second groupings). Alignment using retention time correction was

performed using the “obiwarp” method. FillPeaks were applied to

remove missing values, and the extracted molecular features (m/z

ratios, retention times, and intensities) were normalized before

statistical analysis. The raw data matrix consisted of eight samples

per group, with each sample presenting the average intensity of the

referred molecular feature.

Multivariate statistical analyses were performed on the

MetaboAnalyst 5.0 platform, in which the data matrix of identified

metabolites was normalized by the internal standard, C13 methyl

tridecanoate (m/z 74, RT 13.73 min), and log transformation and

Pareto scaling were also applied. To evaluate instrumental stability,

principal component analysis (PCA) was applied, followed by partial

least squares discriminant analysis (PLS-DA) to indicate metabolite

differences between groups (ethanol vs. control), in which a VIP score

>1.0 from PLS-DA was used to select discriminants.
2.6 Metabolite annotation

Metabolite annotation was performed in AMDIS (Automated

Mass Spectral Deconvolution and Identification System) software

using the Fiehn RT Library. Metabolites were annotated based on

retention time and mass spectral fragmentation pattern. To do that,

retention indexing followed by retention time analysis were

performed. The annotated metabolites were then correlated with

the raw data matrix extracted from XCMS.

3 Results

3.1 Chronic ethanol consumption does not
affect the size and complexity of the bone
marrow cells from mice

To assess whether cell number is a suitable parameter for

normalization of samples in the study, we evaluated the general
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profile of cells by flow cytometry using the complexity (SSC-A) and

size (FSC-A) parameters. The gating strategy was able to select

around 91% of total bone marrow cells in both experimental groups

(Supplementary Figure 1). Figures 1A, B show representative FSC-A

and SSC-A histograms from water-treated animals, while

Figures 1C, D show representative FSC-A and SSC-A histograms

from ethanol-treated animals. Overlapping the histograms (FSC-A
Frontiers in Immunology 04
in Figure 1E and SSC-A in Figure 1F) demonstrates similar

distributions of cells in each parameter. To quantify the

distribution of sizes and complexities of cells in both groups, we

analyzed the area under the curve (AUC) and the results

demonstrated that ethanol treatment did not change the

distribution of cell sizes (Figure 1G) or cell complexities

(Figure 1H) in the bone marrow.
D

A B

E F

G H

C

FIGURE 1

Bone Marrow cells analysis. Representative histograms of size and complexity in bone marrow from ethanol- and water-treated animals by flow
cytometry. FSC-A represents the discrimination of cells by size, while SSC-A represents the complexity of cells. (A, C) represent the frequency of
cells related to their size, and (B, D) represent the frequency of cells related to their complexity. (A, B) water-treated group (C, D) ethanol-treated
group. (E) representative overlapping of (A, C) FSC-A graphs and (F) representative overlapping of (B, D) SSC-A graphs. In blue is the water-treated
group, and in red is the ethanol-treated group. The area under the curve (AUC) of the samples was calculated and represents the distribution of the
entire population used in metabolomics. A statistical analysis of AUC was conducted for FSC (G) and SSC (H). ns represents not statistically
significant.
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3.2 Chronic alcohol consumption alters the
metabolomics profile in the bone marrow

Gas chromatography–coupled mass spectrometry was

performed using pooled bone marrow cells. After carrying out the

identification processes in AMDIS, correlation with the matrix

extracted from XCMS, and removal of the analytes present in the

blank, our approach was effective in identifying 19 metabolites

(Table 1) that were classified into six different Gene Ontology

classes : amino acids , organohetetocycl ic compounds,

monosaccharides, organic acids, and fatty acids alcohols/polyols

(Figure 2). Metabolites 3 and 17 present two possibilities

for identification.

To evaluate the instrumental performance, principal

component analysis (PCA) (Figure 3A) and partial least squares

discriminant analysis (PLS-DA) (Figure 3B) was applied, including

the QC samples. The supervised model (PLS-DA) was validated

using a distance separation method with 100 permutations,

considering a p-value of ≤0.05. It is possible to observe an

excellent group of QCs demonstrating the quality and reliability

of the instrument for data acquisition.

Moreover, to better identify and discriminate metabolites, a new

model (PLS-DA) (Figure 3C) was conducted without the QC
Frontiers in Immunology 05
samples, and a VIP score >1.0 (Figure 3D) was used to consider

statistically significant differences in abundance of the metabolites

between groups. Five metabolites were identified with statistical

significance by multivariate analysis (uracil, L-tyrosine, L-proline,

succinic acid, and nicotinamide).

Table 1 presents, in bold, the significantly altered metabolites

between groups comparison, in which the statistical results (VIP

score) and the variation rate fold change (FC) are presented. These

five statistically different abundance metabolites are decreased in

the ethanol-treated group at several intensities.
4 Discussion

Metabolic profiles have been explored in many diseases (23),

including liver diseases resulting from alcoholism (24–27). This

study was the first to investigate the impact of chronic alcohol

consumption on the bone marrow metabolic profile using an in vivo

model of chronic ethanol consumption. The motivation for this

study stems from evidence demonstrating that chronic

consumption has negative effects on the ability of individuals with

hazardous alcohol use to respond properly during infections (2,

28, 29).
TABLE 1 Metabolites identified by GC–MS analysis and statistically significant altered metabolites in bone marrow cell of ethanol-treated mice.

Metabolite VIP score FC (EtOH/H2O) Chemical Classification

1. Valine 0.63 0.94 Amino acids, peptides, and analogues

2. Alanine 0.99 0.97 Amino acids, peptides, and analogues

3. Leucine/isoleucine 0.06 0.95 Amino acids, peptides, and analogues

4. Benzoic acid 0.62 0.51 Organic acids and derivates

5. Serine 0.82 0.87 Amino acids, peptides, and analogues

6. Proline 1.26 0.98 Amino acids, peptides, and analogues

7. Succinic acid 1.38 0.89 Organic acids and derivates

8. Uracil 2.90 0.71 Organoheterocyclic compounds

9. Fumaric acid 0.54 0.91 Organic acids and derivates

10. Aspartic acid 0.73 0.97 Amino acids, peptides, and analogues

11. Nicotinamide 1.20 0.70 Organoheterocyclic compounds

12. Malic acid 0.28 0.96 Organic acids and derivates

13. Glutamic acid 0.91 0.91 Amino acids, peptides, and analogues

14. Lauric acid 0.28 0.87 Organic acids and derivates

15. Tyrosine 1.07 0.86 Amino acids, peptides, and analogues

16. Hexadecanol 0.01 0.77 Alcohols and Polyols, Other

17. Mannitol/altrose 0.64 1.16 Monosaccharides and Derivatives

18. Linoleic acid 0.34 0.72 Fatty Acids and Fats

19. Oleic acid 0.36 1,11 Fatty Acids and Fats
FC, Fold Change; VIP score, Varial Importance in Projection.
The metabolites present in lines 3 and 17 present two possible identifications. This is due to the analytical impossibility of differentiating these isomers as a function of elution at very close
retention times and because they present identical MS fragmentation profiles. Therefore, the identification is presented with both isomers. Statistically significant altered metabolites that are
present are shown in bold.
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Analytical tools for metabolomics studies have high sensitivity,

being able to identify and quantify the presence of analytes at low

concentrations (30). Therefore, the first step of the present study

was to evaluate, by flow cytometry, whether the parameter number

of cells would be adequate, since alcohol could be causing an

increase in cell size, resulting in a bias toward greater abundance

of the metabolite. The descriptive evaluation obtained from the

FSC, and SSC histograms showed that ethanol treatment does not

cause changes in the size/volume of cells in the bone marrow,

ensuring that the quantitative differences found in this study are

because of alcohol on metabolic pathways, resulting in a distinct

metabolic profile.

The negative effect of chronic ethanol consumption on the

immune system and bone marrow has already been investigated. It

is well established that the cells of the immune system of individuals

affected by alcoholism have a lower capacity to migrate to the

infectious site, phagocyte, and eliminate the pathogen, and the

mechanism is often related to the production of cytokines and

chemokines that have their levels and activities affected (21, 31–34).

In the bone marrow, studies have shown that alcohol consumption

promotes important effects on hematopoiesis (35, 36).

In this study, we evaluated the effect of ethanol on bone marrow

at the level of metabolites. Once cellular metabolism plays an

important role in the functionality of immune cells, changes in

the metabolic profile can compromise their functionality (15).

The metabolomics profile revealed significant effects of chronic

alcohol consumption on the metabolome of mouse bone marrow.

Although the analytical restrictions of the gas chromatography

approach limit the scope of the study to volatile compounds and/

or volatile compounds through derivatization, it was possible to

obtain a holistic approach to the metabolic profile of this tissue as

well as the changes resulting from chronic exposure to alcohol.

Nicotinamide (C6H6N2O) showed reduced abundance in cells

from animals under chronic treatment with ethanol. Nicotinamide

is the active form of vitamin B3 and a component of the coenzyme

nicotinamide adenine dinucleotide (NAD). When ethanol is

metabolized, it generates a reduced cellular environment due to

the use of nicotinamide adenine dinucleotide (NAD+) as an
Frontiers in Immunology 06
enzymatic cofactor at both stages of its metabolism. The reduced

cellular environment has been related to the dysfunctions observed

in the cells of the immune system (2, 21, 37, 38). In addition, NAD+

is an enzyme cofactor used in important metabolic pathways such

as glycolysis and the Krebs cycle, which have been reported to be

essential for neutrophil and macrophage function (15, 39, 40). We

hypothesize that ethanol metabolism limits the availability of NAD+

for cell metabolism, altering the metabolic profile. This alteration

may be related to the negative effect of alcohol on the function of

these cells. Our results suggest that this may be part of the

mechanism by which alcohol alters metabolism in this tissue.

Although functional studies are needed to confirm and elucidate

this evidence.

Succinic acid, an important component of the TCA cycle, was

recently identified as a modulator of the innate immune response.

In lipopolysaccharide (LPS)-activated macrophages, succinate was

identified as a key metabolite in innate immune response signaling

since its increase is correlated to increased production of

interleukin-1b during inflammation (41, 42). Furthermore,

lipopolysaccharide-induced succinate stabilizes hypoxia-inducible

factor (HIF-1a), an effect that is inhibited by 2-deoxyglucose, with

interleukin-1b as an important target (41, 43). HIF-1a is an oxygen-

dependent transcriptional activator that plays crucial roles in tumor

angiogenesis and mammalian development (44). Furthermore,

HIF-1a increases macrophage aggregation, invasion, and motility

and boosts the expression of pro-inflammatory cytokines. HIF-1a
also increases neutrophil survival by inhibiting apoptosis and

triggering NF-kB-dependent neutrophilic inflammation (45).

Succinate was also shown to promote hematopoietic cell

proliferation by phosphorylation of the ERK1/2 mitogen-activated

protein kinase (MAPK) pathway and inositol phosphate

accumulation in a pertussis toxin (PTX)-sensitive manner (46).

Furthermore, succinate induced activation of ERK1/2, JNK, and

p38 MAPK signaling pathways in immortalized retinal ganglion

cells (RGC-5) cells in a dose-dependent manner (47). The ERK1/2

and MAPK pathways are related to the activation of the pro-

inflammatory response of immune cells (48–50). Therefore, the

deregulation in the amount of succinate found in this work can be

considered a modulating mechanism of chronic alcohol

consumption in the immune response.

In agreement with studies that investigated changes in the

metabolome associated with alcohol consumption in humans,

amino acids are the most representative chemical class (51).

Tyrosine and proline are non-essential amino acids used in

protein biosynthesis. Protein tyrosine (PTP) phosphorylation is

an important post-translational modification that controls cell

signaling involved in the regulation of a variety of biological

processes, including cell growth, proliferation, differentiation,

migration, survival, and death. The negative effect of

downregulating these amino acids in the ethanol-treated group

can impair an important biological process since tyrosine

phosphorylation is considered one of the fundamental steps in

signal transduction and regulation of enzymatic activity (52).

However, studies that investigate the relationship between

quantitative alterations of amino acids and the function of

immune system cells were not found in the literature. The results
FIGURE 2

Biological categorization of identified metabolites. All 19 identified
metabolites were classified according to functional categorization in
PubChem (https://pubchem.ncbi.nlm.nih.gov). Percentages
represent the number of classified metabolites in each category.
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found here suggest that investigations in this direction may be

promising for understanding the mechanism behind the harmful

effect of alcohol on immune response. Once some amino acids like

tyrosine can be catabolized all the way down into intermediaries of

the Krebs cycle, especially into fumarate and acetoacetate (53).

Uracil is a common natural pyrimidine found in RNA and was

found to be downregulated in the bone marrow of ethanol-treated

mice. Despite not finding in the literature a direct relationship

between this nucleotide and the function of immune cells, it is

known that uracil helps to carry out the synthesis of many enzymes

necessary for cell function through the interaction with ribose and

phosphates and serves as an allosteric regulator and a coenzyme for

many important biochemical reactions (54).

A wide variety of types of RNAs act in the regulation of the

immune system. microRNAs, RNA-binding proteins that control

the stability and translation of messenger RNA (mRNA) and RNA

interference (RNAi) are examples of RNAs that act by controlling

the gene expression of cytokines and chemokines responsible for
Frontiers in Immunology 07
the intercellular communication of the immune system (55, 56).

The decrease in uracil levels resulting from the chronic

consumption of ethanol in the bone marrow may indirectly

compromise the entire elaboration of the immune response.

Metabolic profiles can be considered a phenotypic state that

undergoes variations under the influence of changes in the genome,

proteome, transcriptome, metabolism, and modifications in the

microenvironment where they are found (57). In our approach,

we demonstrate for the first time that chronic ethanol consumption

can alter the bone marrow microenvironment, and this can be

associated with altered immune cell metabolism, leading to a

programmed alteration function of the mature circulating cells.

However, this is an initial, exploratory metabolomics study that

brings important insights into cellular metabolism under alcohol

exposure. We are aware of some limitations of our approach, such

as the influence of animal gender in metabolism and susceptibility

to alcohol, the use of other analytical platforms that should improve

the number of identified metabolites, and the need for functional
D

A B

C

FIGURE 3

Multivariate models (Pareto scaling) of metabolites identified in cell samples analyzed by GC–MS and discriminating metabolites between ethanol-
treated and control groups by GC–MS. (A) Principal component analysis (PCA) and (B) partial least squares discriminant analysis (PLS-DA). Each dot
represents one sample, and (A, B) show a separation of the groups and a robust clustering of the Quality Controls (QC). PSL-DA model parameters:
R2 = 0.58 and Q2 = 0.26). Quality controls (QC—blue dots), a water-treated control group (H2O—green dots), and ethanol-treated experimental
group (EtOH—red dots). (C) The PLS-DA Model (Pareto scale) shows a separation between the groups; (D) the VIP Score Chart contains the
discriminating metabolites between groups. A VIP score >1 is considered significant. A red (high) to blue (low) scale indicates the relative abundance
of metabolites in the ethanol-treated group compared to the water-treated control group. The green ellipses represent the water-treated control
group, and the red ellipses represent the ethanol-treated experimental group.
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studies to demonstrate the role of metabolic pathways in the

immune response. In addition, the effects of blood alcohol

concentration and the effects of the products of its metabolism

(e.g., acetaldehyde) can also be considered. Complementary studies

will allow greater coverage of the metabolome, in addition to

confirming and validating the hypotheses raised in this work.
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