102 research outputs found

    Cyclic triterpenoid production with tailored Saccharomyces cerevisiae

    Get PDF
    Triterpenoids are secondary plant metabolites derived from squalene and consist of six isoprene units (C30). Many of them or their synthetic derivatives are currently being investigated as medicinal products for various diseases. The cyclic triterpenoid betulinic acid is of special interest for the pharmaceutical and nutritional industry as it has antiretroviral, antimalarial, and anti-inflammatory properties and has potential as an anticancer agent (Muffler et al. 2011, Mullauer et al. 2010). Despite their obvious industrial potential, the application is often hindered by their low abundance in natural plant sources. This poses challenges in a biosustainable production of such compounds due to wasteful and costly product purification. Here, we present a novel biotechnological process for the production of betulinic acid using tailored Saccharomyces cerevisiae strains. The multi-scale optimization of this microbial process included: - pathway engineering by determination of optimal gene combination and dosage, - compartment engineering to increase the reaction space of the betulinic acid pathway, and - strain engineering by implementation of different push, pull and block strategies. In parallel we developed the fermentation process and were able to boost the performance of the engineered yeast by optimization of medium composition, cultivation conditions, carbon source and mode of fermentation operation in lab scale bioreactors. Product purification was achieved by a one-step extraction with acetone. The final process was evaluated in terms of economic and ecological efficiency and rated to be competitive with existing plant extraction procedures with potential for further performance improvement. Please click Additional Files below to see the full abstract

    Influence of the ageing conditions and the initial microstructure on the precipitation of α phase in Ti-17 alloy

    Get PDF
    The precipitation of α phase during ageing was investigated in the near-β titanium alloy Ti-17 considering either a fully βmetastable initial microstructure or a 35% αprimary + 65% βmetastable initial microstructure. In-situ electrical resistivity and high energy X-ray diffraction measurements revealed the influence of the initial microstructure, with different α morphologies (size and distribution of αprimary), as well as the heating rate on the precipitation sequences and kinetics following the decomposition of the β-metastable phase. Various amounts of metastable phases (ωisothermal and α″isothermal) precipitate in temperature ranges that increase with the heating rate. From temperatures about 500 °C, the orthorhombic α″isothermal structure evolved towards the hexagonal close-packed α as temperature increased. SEM microstructure characterisations showed that slow heating rates promoted a fine and dense α precipitate distribution through the formation of ωisothermal and/or α″isothermal, leading to higher hardness values. A higher heating rate restricted the precipitation of α″isothermal and shifted to the one of α at a higher temperature, leading to coarser precipitates. Furthermore, precipitation kinetics of α″isothermal/α were quicker considering an initial intragranular α precipitation as compared to α colonies

    EasyClone: method for iterative chromosomal integration of multiple genes in <em>Saccharomyces cerevisiae</em>

    Get PDF
    Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log(10) mean +/- 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out

    A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments

    Get PDF
    Identifying the connections between molecular and physiological processes underlying the diversity of drought stress responses in plants is key for basic and applied science. Drought stress response involves a large number of molecular pathways and subsequent physiological processes. Therefore, it constitutes an archetypical systems biology model. We first inferred a gene-phenotype network exploiting differences in drought responses of eight sunflower (Helianthus annuus) genotypes to two drought stress scenarios. Large transcriptomic data were obtained with the sunflower Affymetrix microarray, comprising 32423 probesets, and were associated to nine morpho-physiological traits (integrated transpired water, leaf transpiration rate, osmotic potential, relative water content, leaf mass per area, carbon isotope discrimination, plant height, number of leaves and collar diameter) using sPLS regression. Overall, we could associate the expression patterns of 1263 probesets to six phenotypic traits and identify if correlations were due to treatment, genotype and/or their interaction. We also identified genes whose expression is affected at moderate and/or intense drought stress together with genes whose expression variation could explain phenotypic and drought tolerance variability among our genetic material. We then used the network model to study phenotypic changes in less tractable agronomical conditions, i.e. sunflower hybrids subjected to different watering regimes in field trials. Mapping this new dataset in the gene-phenotype network allowed us to identify genes whose expression was robustly affected by water deprivation in both controlled and field conditions. The enrichment in genes correlated to relative water content and osmotic potential provides evidence of the importance of these traits in agronomical conditions

    Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering.</p> <p>Results</p> <p>In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between <it>Saccharomyces cerevisiae </it>strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the <it>Saccharomyces </it>Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (<it>GAL1</it>, <it>GAL10</it>) and ergosterol biosynthetic pathway (<it>ERG8</it>, <it>ERG9</it>). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function.</p> <p>Conclusions</p> <p>With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at <url>http://www.sysbio.se/cenpk</url>.</p

    Bone marrow graft versus peripheral blood graft in haploidentical hematopoietic stem cells transplantation: a retrospective analysis in1344 patients of SFGM-TC registry.

    Full text link
    peer reviewedThe use of peripheral blood (PB) or bone marrow (BM) stem cells graft in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide (PTCy) for graft-versus-host disease (GVHD) prophylaxis remains controversial. Moreover, the value of adding anti-thymoglobulin (ATG) to PTCy is unknown. A total of 1344 adult patients received an unmanipulated haploidentical transplant at 37 centers from 2012 to 2019 for hematologic malignancy. We compared the outcomes of patients according to the type of graft, using a propensity score analysis. In total population, grade II-IV and III-IV acute GVHD (aGVHD) were lower with BM than with PB. Grade III-IV aGVHD was lower with BM than with PB + ATG. All outcomes were similar in PB and PB + ATG groups. Then, in total population, adding ATG does not benefit the procedure. In acute leukemia, myelodysplastic syndrome and myeloproliferative syndrome (AL-MDS-MPS) subgroup receiving non-myeloablative conditioning, risk of relapse was twice greater with BM than with PB (51 vs. 22%, respectively). Conversely, risk of aGVHD was greater with PB (38% for aGVHD II-IV; 16% for aGVHD III-IV) than with BM (28% for aGVHD II-IV; 8% for aGVHD III-IV). In this subgroup with intensified conditioning regimen, risk of relapse became similar with PB and BM but risk of aGVHD III-IV remained higher with PB than with BM graft (HR = 2.0; range [1.17-3.43], p = 0.012)
    corecore