481 research outputs found
Silicone rubber selection for passive sampling of pesticides in water.
The authors thank G. Raffin and M. Hangouet (ISA, UMR 5280) for TGA analysis and interpretation, and C. Guillemain (Irstea) for analytical support.International audienceSilicone rubber can extract organic compounds with a broad range of polarities (logKow>2-3) from aqueous samples. Such compounds include substances of major concern in the protection of aquatic ecosystems and human health, e.g. pesticides. Silicone rubbers (SRs) with various characteristics have been successfully used in sorptive methods for water sample extraction in the laboratory (SPME, SBSE), and for passive sampling in aquatic environments. However, only few studies have evaluated variability in organic compound sorption due to the origin of SRs, particularly for pesticides. The aim of this study was to select an SR for the extraction of pesticides from water samples by passive sampling. To this end we measured the impact of seven SR formulations on sorption capacity, defined by the partition coefficient (Ksw). Kinetic experiments and sorption isotherms were performed to determine extraction recovery as a selection criterion for SRs, and pesticide partition coefficients. Very large differences in affinity for pesticides were found between two kinds of SRs: "Polymerized SR kits" and "Manufactured SRs". One SR was chosen among the "Manufactured SRs", and the Ksw values of 21 pesticides were determined, filling a gap in the literature (1.50<logKow<5.51). In light of sorption properties, literature data and additional economic and technical factors, we suggest using SR from Goodfellow in future work to reduce the variability of Ksw literature values
Testing for w<-1 in the Solar System
In scalar-tensor theories of gravity, the equation of state of dark energy,
w, can become smaller than -1 without violating any energy condition. The value
of w today is tied to the level of deviations from general relativity which, in
turn, is constrained by solar system and pulsars timing experiments. The
conditions on these local constraints for w to be significantly less than -1
are established. It is demonstrated that this requires to consider theories
that differ from the Jordan-Fierz-Brans-Dicke theory and that involve either a
steep coupling function or a steep potential. It is also shown how a robust
measurement of w could probe scalar-tensor theories.Comment: 4 pages, 1 figur
On the properties of the transition matrix in bouncing cosmologies
We elaborate further on the evolution properties of cosmological fluctuations
through a bounce. We show this evolution to be describable either by
``transmission'' and ``reflection'' coefficients or by an effective unitary
S-matrix. We also show that they behave in a time reversal invariant way.
Therefore, earlier results are now interpreted in a different perspective and
put on a firmer basis.Comment: 4 pages, 1 figure, to appear in PR
On the "Causality Argument" in Bouncing Cosmologies
We exhibit a situation in which cosmological perturbations of astrophysical
relevance propagating through a bounce are affected in a scale-dependent way.
Involving only the evolution of a scalar field in a closed universe described
by general relativity, the model is consistent with causality. Such a specific
counter-example leads to the conclusion that imposing causality is not
sufficient to determine the spectrum of perturbations after a bounce provided
it is known before. We discuss consequences of this result for string motivated
scenarios.Comment: 4 pages, 1 figure, ReVTeX, to appear in Phys. Rev. Let
Trans-Planckian Dark Energy?
It has recently been proposed by Mersini et al. 01, Bastero-Gil and Mersini
02 that the dark energy could be attributed to the cosmological properties of a
scalar field with a non-standard dispersion relation that decreases
exponentially at wave-numbers larger than Planck scale (k_phys > M_Planck). In
this scenario, the energy density stored in the modes of trans-Planckian
wave-numbers but sub-Hubble frequencies produced by amplification of the vacuum
quantum fluctuations would account naturally for the dark energy. The present
article examines this model in detail and shows step by step that it does not
work. In particular, we show that this model cannot make definite predictions
since there is no well-defined vacuum state in the region of wave-numbers
considered, hence the initial data cannot be specified unambiguously. We also
show that for most choices of initial data this scenario implies the production
of a large amount of energy density (of order M_Planck^4) for modes with
momenta of order M_Planck, far in excess of the background energy density. We
evaluate the amount of fine-tuning in the initial data necessary to avoid this
back-reaction problem and find it is of order H/M_Planck. We also argue that
the equation of state of the trans-Planckian modes is not vacuum-like.
Therefore this model does not provide a suitable explanation for the dark
energy.Comment: RevTeX - 15 pages, 7 figures: final version to appear in PRD, minor
changes, 1 figure adde
On Signatures of Short Distance Physics in the Cosmic Microwave Background
Following a self-contained review of the basics of the theory of cosmological
perturbations, we discuss why the conclusions reached in the recent paper by
Kaloper et al are too pessimistic estimates of the amplitude of possible
imprints of trans-Planckian (string) physics on the spectrum of cosmic
microwave anisotropies in an inflationary Universe. It is shown that the likely
origin of large trans-Planckian effects on late time cosmological fluctuations
comes from nonadiabatic evolution of the state of fluctuations while the
wavelength is smaller than the Planck (string) scale, resulting in an excited
state at the time that the wavelength crosses the Hubble radius during
inflation.Comment: 11 pages, 4 figure
Geodesic Deviation in Kaluza-Klein Theories
We study in detail the equations of the geodesic deviation in
multidimensional theories of Kaluza-Klein type. We show that their
4-dimensional space-time projections are identical with the equations obtained
by direct variation of the usual geodesic equation in the presence of the
Lorentz force, provided that the fifth component of the deviation vector
satisfies an extra constraint derived here.Comment: 5 pages, Revtex, 1 figure. To appear in Phys. Rev. D (Brief Report
The Corley-Jacobson dispersion relation and trans-Planckian inflation
In this Letter we study the dependence of the spectrum of fluctuations in
inflationary cosmology on possible effects of trans-Planckian physics, using
the Corley/Jacobson dispersion relations as an example. We compare the methods
used in previous work [1] with the WKB approximation, give a new exact
analytical result, and study the dependence of the spectrum obtained using the
approximate method of Ref. [1] on the choice of the matching time between
different time intervals. We also comment on recent work subsequent to Ref. [1]
on the trans-Planckian problem for inflationary cosmology.Comment: 6 pages, Revtex
Coupling Quintessence to Inflation in Supergravity
The evolution of the quintessence field during a phase of chaotic inflation
is studied. The inflaton and the quintesssence field are described in a
supergravity framework where the coupling between the inflaton and quintessence
is induced by non-renormalisable operators suppressed by the Planck mass. We
show that the resulting quintessence potential during inflation possesses a
time--dependent minimum playing the role of an attractor. The presence of this
attractor forces the quintessence field to be small during inflation. These
initial conditions are such that the quintessence field is on tracks now.Comment: 16 pages, 6 figure
The scalar bi-spectrum during preheating in single field inflationary models
In single field inflationary models, preheating refers to the phase that
immediately follows inflation, but precedes the epoch of reheating. During this
phase, the inflaton typically oscillates at the bottom of its potential and
gradually transfers its energy to radiation. At the same time, the amplitude of
the fields coupled to the inflaton may undergo parametric resonance and, as a
consequence, explosive particle production can take place. A priori, these
phenomena could lead to an amplification of the super-Hubble scale curvature
perturbations which, in turn, would modify the standard inflationary
predictions. However, remarkably, it has been shown that, although the
Mukhanov-Sasaki variable does undergo narrow parametric instability during
preheating, the amplitude of the corresponding super-Hubble curvature
perturbations remain constant. Therefore, in single field models, metric
preheating does not affect the power spectrum of the large scale perturbations.
In this article, we investigate the corresponding effect on the scalar
bi-spectrum. Using the Maldacena's formalism, we analytically show that, for
modes of cosmological interest, the contributions to the scalar bi-spectrum as
the curvature perturbations evolve on super-Hubble scales during preheating is
completely negligible. Specifically, we illustrate that, certain terms in the
third order action governing the curvature perturbations which may naively be
expected to contribute significantly are exactly canceled by other
contributions to the bi-spectrum. We corroborate selected analytical results by
numerical investigations. We conclude with a brief discussion of the results we
have obtained.Comment: v1: 15 pages, 4 figures; v2: 15 pages, 4 figures, discussion and
references added, to appear in Phys. Rev.
- …