29 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Time-Lapse Imaging of Neuroblastoma Cells to Determine Cell Fate upon Gene Knockdown

    Get PDF
    <div><p>Neuroblastoma is the most common extra-cranial solid tumor of early childhood. Standard therapies are not effective in case of poor prognosis and chemotherapy resistance. To improve drug therapy, it is imperative to discover new targets that play a substantial role in tumorigenesis of neuroblastoma. The mitotic machinery is an attractive target for therapeutic interventions and inhibitors can be developed to target mitotic entry, spindle apparatus, spindle activation checkpoint, and mitotic exit. We present an elaborate analysis pipeline to determine cancer specific therapeutic targets by first performing a focused gene expression analysis to select genes followed by a gene knockdown screening assay of live cells. We interrogated gene expression studies of neuroblastoma tumors and selected 240 genes relevant for tumorigenesis and cell cycle. With these genes we performed time-lapse screening of gene knockdowns in neuroblastoma cells. We classified cellular phenotypes and used the temporal context of the perturbation effect to determine the sequence of events, particularly the mitotic entry preceding cell death. Based upon this phenotype kinetics from the gene knockdown screening, we inferred dynamic gene functions in mitosis and cell proliferation. We identified six genes (<em>DLGAP5</em>, <em>DSCC1</em>, <em>SMO</em>, <em>SNRPD1</em>, <em>SSBP1</em>, and <em>UBE2C</em>) with a vital role in mitosis and these are promising therapeutic targets for neuroblastoma. Images and movies of every time point of all screened genes are available at <a href="https://ichip.bioquant.uni-heidelberg.de">https://ichip.bioquant.uni-heidelberg.de</a>.</p> </div

    The workflow.

    No full text
    <p>(A) Neuroblastoma associated genes were selected based on gene expression profiles of neuroblastoma tumors and cell lines, (B) selected genes were subjected to image-based time-lapse siRNA knockdown screens, (C) each cell in an image was classified into one of the phenotype classes interphase, mitosis, or cell death, and (D) time series of the phenotypes were assembled into phenotype profiles to determine gene function of each gene knockdown.</p

    An isoreticular family of microporous metal-organic frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate: syntheses, structures and properties

    No full text
    We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1–4, IFP=imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R=Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0–1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345–400 °C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP-1–4 under dry conditions and that both CO2 and H2O are physisorbed on IFP-1 under moist conditions

    Time series of interphase cells during five days of screening.

    No full text
    <p>The population shows a periodicity of ∼35 hours representing the cell cycle duration (blue bars: interphase counts (normalized by B-Score normalization) of all screened cells for each time-frame, red curve: fitting curve).</p

    Consequences of a gene knockdown on the cell cycle and cell fate.

    No full text
    <p>These effects can be observed (directly or indirectly) by imaging cells with silenced genes following a mitotic time-lapse screening assay. Cells may directly be affected from a loss-of-function of a gene and die (cell death), they may enter mitosis and die before completion of mitosis (cell death in mitotic arrest) or may undergo mitotic slippage followed by interphase arrest or cell death <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050988#pone.0050988-Manchado1" target="_blank">[23]</a>.</p

    A randomized double-blind controlled trial to assess the benefits of amisulpride and olanzapine combination treatment versus each monotherapy in acutely ill schizophrenia patients (COMBINE): methods and design

    No full text
    This report presents the rationale and design of a multi-center clinical trial that examines the efficacy and safety of antipsychotic combination treatment in acutely ill schizophrenia patients compared to antipsychotic monotherapy. Antipsychotic combination treatment is common in clinical practice worldwide, despite clinical guidelines generally not recommending such practice due to lacking evidence for its efficacy and safety. Olanzapine has a related chemical structure and comparable receptor-binding profile as clozapine, which demonstrated superior efficacy in combination studies, but has a more unfavorable side-effect profile compared to olanzapine. Amisulpride and olanzapine have shown promising therapeutic efficacy in meta-analyses in monotherapy for people with schizophrenia. Combining amisulpride and olanzapine, complementary receptor-binding properties may enhance efficacy and possibly reduce (or at least not augment) side effects due to the different receptor profiles and metabolization pathways. Accordingly, we hypothesize that patients treated with amisulpride plus olanzapine show greater improvement on the Positive and Negative Syndrome Scale total score after 8 weeks versus either monotherapy. A randomized, double-blind controlled trial is performed at 16 German centers comparing flexibly dosed monotherapy of oral amisulpride (400-800 mg/day), and olanzapine (10-20 mg/day) and amisulpride-olanzapine co-treatment. Sample size was calculated to be n = 101 per treatment arm, assuming an effect size of 0.500 and a two-sided alpha = 0.025 and beta = 0.90. Recruitment for this trial started in June 2012. Until December 2018, 328 patients have been randomized. Trial conduct has been extended to reach the projected sample size. Publication of the study results is expected in 2019 informing an evidence-based recommendation regarding specific antipsychotic combination treatment
    corecore