152 research outputs found

    Analytical model for the sputtering of rough surfaces

    Get PDF
    The sputtering yields of solids under ion bombardment are highly sensitive to the roughness of their surfaces. Understanding how sputtering is exactly affected by different surface morphologies is relevant especially for plasma-wall interaction in fusion reactors and space weathering of planetary surfaces. We present an analytical model that allows to calculate sputtering yields of random gaussian rough surfaces under arbitrary angles of incidence, taking into account local incidence angles, shadowing and redeposition of sputtered materials. Sputtering yields of a rough surface can then be calculated with the sputtering yield’s dependence on the ion incidence angle for a flat surface and a single statistical parameter, which characterizes the surface roughness. The model supports previous findings that the mean surface inclination angle is a well-suited parameter to describe the sputtering behavior of rough surfaces. Comparisons of the results to previous experiments and numerical simulations for various cases are presented, showing that the model allows to quantitatively reproduce sputtering yields of different samples over a wide range of roughness regimes

    Design of a bed load and driftwood filtering dam, analysis of the phenomena and hydraulic design

    Get PDF
    Flood protection often calls on to the realization of retention works for bed load as well as wood and debris flow. Certain relatively recent arrangements did not perform according to their intended function, what shows the complexity of the design and the implementation of such works. Adaptations were necessary to reach the security objectives. The design of a retention dam for solid materials and floating driftwood requires the consideration of numerous hydraulic and material transport processes. The analyses and design validation can be made with two approaches: physical modelling by the construction of a reduced scale model and the test realization or numerical simulation, by means of software packages such as GESMAT (1D) or TOPOFLOW (2D). The present work consists in implementing both approaches, in estimating and in comparing the answers which could be given for a bed load and debris flow filtering dam on a river with a slope of the order of 10%. Thanks to water level gauges and visual observations during tests on the physical model, the progression of the obstructions by driftwood and bed load is well understood, and the effectiveness of these obstructions proven. The tested work plays at first a role of filtering and retention and secondly a role of side overflow towards a zone with low damage potential, when the capacity of the in-stream retention space is reached. The performed numerical simulations, essentially in 1D, reproduce well the phenomena of bed load aggradation. Moreover, the potential obstruction by floating wood is considered and influences the behavior of the structure. By putting in parallel physical and numerical models, it was possible thanks to the results from the physical scale model to refine the numerical simulation tools taking into consideration additional components and behavior-type rules. These further established rules can now be used for other cases where physical modelling is not foreseen

    A single MYB transcription factor with multiple functions during flower development.

    Get PDF
    Members of the R2R3-MYB transcription factor subgroup 19 (SG19) have been extensively studied in multiple plant species using different silenced or mutated lines. Some studies have proposed a function in flower opening, others in floral organ development/maturation, or specialized metabolism production. While SG19 members are clearly key players during flower development and maturation, the resulting picture is complex, confusing our understanding in how SG19 genes function. To clarify the function of the SG19 transcription factors, we used a single system, Petunia axillaris, and targeted its two SG19 members (EOB1 and EOB2) by CRISPR-Cas9. Although EOB1 and EOB2 are highly similar, they display radically different mutant phenotypes. EOB1 has a specific role in scent emission while EOB2 has pleiotropic functions during flower development. The eob2 knockout mutants reveal that EOB2 is a repressor of flower bud senescence by inhibiting ethylene production. Moreover, partial loss-of-function mutants (transcriptional activation domain missing) show that EOB2 is also involved in both petal and pistil maturation through regulation of primary and secondary metabolism. Here, we provide new insights into the genetic regulation of flower maturation and senescence. It also emphasizes the function of EOB2 in the adaptation of plants to specific guilds of pollinators
    • …
    corecore