5,771 research outputs found

    Orthogonality constraints and entropy in the SO(5)-Theory of HighT_c-Superconductivity

    Full text link
    S.C. Zhang has put forward the idea that high-temperature-superconductors can be described in the framework of an SO(5)-symmetric theory in which the three components of the antiferromagnetic order-parameter and the two components of the two-particle condensate form a five-component order-parameter with SO(5) symmetry. Interactions small in comparison to this strong interaction introduce anisotropies into the SO(5)-space and determine whether it is favorable for the system to be superconducting or antiferromagnetic. Here the view is expressed that Zhang's derivation of the effective interaction V_{eff} based on his Hamiltonian H_a is not correct. However, the orthogonality constraints introduced several pages after this 'derivation' give the key to an effective interaction very similar to that given by Zhang. It is shown that the orthogonality constraints are not rigorous constraints, but they maximize the entropy at finite temperature. If the interaction drives the ground-state to the largest possible eigenvalues of the operators under consideration (antiferromagnetic ordering, superconducting condensate, etc.), then the orthogonality constraints are obeyed by the ground-state, too.Comment: 10 pages, no figure

    Remnant superfluid collective phase oscillations in the normal state of systems with resonant pairing

    Full text link
    The signature of superfluidity in bosonic systems is a sound wave-like spectrum of the single particle excitations which in the case of strong interactions is roughly temperature independent. In fermionic systems, where fermion pairing arises as a resonance phenomenon between free fermions and paired fermionic states (examples are: the atomic gases of lithium or potassium controlled by a Feshbach resonance, polaronic systems in the intermediary coupling regime, d-wave hole pairing in the strongly correlated Hubbard system), remnants of such superfluid characteristics are expected to be visible in the normal state. The single particle excitations maintain there a sound wave like structure for wave vectors above a certain q_{min}(T) where they practically coincide there with the spectrum of the superfluid phase for T<T_{c}. Upon approaching the transition from above this region in q-space extends down to small momenta, except for a narrow region around q=0 where such modes change into damped free particleComment: 5 pages, 3 figures; to appear in Phys Rev

    Cryogenic liquid level measuring probe

    Get PDF
    Universal probe, which contains a unique frequency discriminator, measures the static and dynamic levels of cryogenic liquids in a hydrogen bubble chamber. The probe allows boiling conditions or other turbulence to be observed throughout all the transition stages

    Bogoliubov shadow bands in the normal state of superconducting systems with strong pair fluctuations

    Full text link
    On the basis of a scenario where electron pairing is induced by resonant two-particle scattering (the Boson Fermion model), we show how precursors of the superconducting state - in form of overdamped Bogoliubov modes - emerge in the normal state upon approaching the transition temperature from above. This result is obtained by a renormalization technique based on continuous unitary transformations (the flow equations), projecting out the coherent contributions in the electron spectral function from an incoherent background.Comment: 4 pages, 2 figure

    Panel Discussion on Inducer Design Criteria

    Get PDF
    This article reports a panel discussion titled Inducer Design Criteria presented at the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9). The presentations of the panelists and the subsequent discussions are summarized. It is shown that cavitation instabilities are major problems in modern turbopumps and that design criteria to eliminate them are needed. Available design methods for inducers and marine propellers are reviewed, and new criteria to enhance stability are proposed. The current status of CFD is reviewed and an example of successful application is shown. Discussions of several specific topics are reported and future research needs are noted

    Pulse EPR measurements of intramolecular distances in a TOPP-labeled transmembrane peptide in lipids.

    Get PDF
    We present the performance of nanometer-range pulse electron paramagnetic resonance distance measurements (pulsed electron-electron double resonance/double electron-electron resonance, PELDOR/DEER) on a transmembrane WALP24 peptide labeled with the semirigid unnatural amino acid 4-(3,3,5,5-tetra-methyl-2,6-dioxo-4-oxylpiperazin-1-yl)-l-phenylglycine (TOPP). Distances reported by the TOPP label are compared to the ones reported by the more standard MTSSL spin label, commonly employed in protein studies. Using high-power pulse electron paramagnetic resonance spectroscopy at Q-band frequencies (34 GHz), we show that in contrast to MTSSL, our label reports one-peak, sharp (Δr ≤ 0.4 nm) intramolecular distances. Orientational selectivity is not observed. When spin-labeled WALP24 was inserted in two representative lipid bilayers with different bilayer thickness, i.e., DMPC and POPC, the intramolecular distance reported by TOPP did not change with the bilayer environment. In contrast, the distance measured with MTSSL was strongly affected by the hydrophobic thickness of the lipid. The results demonstrate that the TOPP label is well suited to study the intrinsic structure of peptides immersed in lipids

    Experimental investigation of ultrahigh vacuum adhesion as related to the lunar surface Quarterly progress report, 1 Apr. - 31 Jun. 1969

    Get PDF
    Electrical charge distribution in ultrahigh vacuum fracture and etching of silicates for lunar simulation studie

    The genomics of neonatal abstinence syndrome

    Get PDF
    Significant variability has been observed in the development and severity of neonatal abstinence syndrome (NAS) among neonates exposed to prenatal opioids. Since maternal opioid dose does not appear to correlate directly with neonatal outcome, maternal, placental, and fetal genomic variants may play important roles in NAS. Previous studies in small cohorts have demonstrated associations of variants in maternal and infant genes that encode the μ-opioid receptor (OPRM1), catechol-O-methyltransferase (COMT), and prepronociceptin (PNOC) with a shorter length of hospital stay and less need for treatment in neonates exposed to opioids in utero. Consistently falling genomic sequencing costs and computational approaches to predict variant function will permit unbiased discovery of genomic variants and gene pathways associated with differences in maternal and fetal opioid pharmacokinetics and pharmacodynamics and with placental opioid transport and metabolism. Discovery of pathogenic variants should permit better delineation of the risk of developing more severe forms of NAS. This review provides a summary of the current role of genomic factors in the development of NAS and suggests strategies for further genomic discovery

    New applications of the renormalization group method in physics -- a brief introduction

    Full text link
    The renormalization group method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The theme issue provides articles reviewing recent progress made using the renormalization group method in atomic, condensed matter, nuclear and particle physics. In the following we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.Comment: Introduction for a theme issue of the Phil. Trans.
    • …
    corecore