17 research outputs found

    Angiocentric glioma from a perspective of A-B-C classification of epilepsy associated tumors

    Get PDF
    Angiocentric glioma (AG) is a newly-classified, very rare, WHO grade I central nervous system (CNS) lesion, occurring usually in children and young adults. Only 52 patients with AG have been reported so far, making it one of the rarest neuropathological entities. Hereby we present two new cases of AG in young subjects with detailed neuropathological investigations and a neuroradiological picture along with a brief summary of all already published literature reports of this tumor. Histopathological examination of the resected tissue from both cases revealed similar changes characteristic of AG. The tumors were composed of spindle-like, elongated cells, forming characteristic pseudorosettes around vessels and diffusively infiltrating surrounding tissue, trapping neurons between tumor cells. Noticeably, some neoplastic cells encrusting vessels extended far beyond the main tumor mass. Hypothetically, this may be responsible for the recurrence of the tumor even in the case of apparently total excision. In immunohistochemistry, AG cells were glial fibrillary acidic protein (GFAP) and vimentin positive, also exhibiting a strikingly significant epithelial membrane antigen (EMA) dot-like staining pattern. In one of the cases, electron microscopy revealed ependymal differentiation features such as microvilli and cilia. Taken together, all these data strongly confirm a dual astroglial-ependymal nature of the tumor. Follow up corroborates benign character of this neoplasm. Both AGs reported here were immunonegative for the product of the mutated IDH-1 gene what, according to our best knowledge, has never been reported so far. It may suggest that in their pathogenesis AGs differ from grade II astrocytomas, which in most cases harbor a mutation of IDH-1. Noteworthy, neuroimaging in our cases was relatively characteristic but not conclusive, therefore biopsy (at least) is mandatory. A newly proposed so called "A-B-C" classification of long-term epilepsy-associated tumors (LEATs) places AG in a category named ANET. The authors shortly review the A-B-C classification of LEATs

    Spectroscopic Methods in the Evaluation of Modified Vegetable Base Oils from <i>Crambe abyssinica</i>

    No full text
    Raw vegetable oil from Crambe abyssinica was subjected to oxidative treatment to enhance its viscosity. The oxidation processes were carried out in the presence of N-hydroxyphthalimide with or without supercritical CO2 as a solvent. Four spectroscopic techniques (Raman, UV-VIS, FT-IR, NMR) were applied to assess the chemical changes taking place during the oxidation. Raman and NMR spectroscopy proved best in the assessment of the chemical transformations leading to increased viscosity of the modified vegetable oil

    ER stress and Poly(I:C) activate ATF4 nuclear translocation and enhance phosphorylation of PERK and eIF2α.

    No full text
    <p>ATF4<b>,</b> pPERK/PERK, and p-eIF2α<b>/</b>eIF2α protein levels in HDMECs after treatment with 10pM TG (a), 2.5 µg/µl Poly(I:C) (b), or transduction with 10 MOI of HLA-B35 or HLA-B8 Ads for 48 hours (c). 20 µg of nuclear extract were separated via 15% SDS-PAGE for ATF4 and 10% SDS-PAGE for ATF6. 20 µg of total cellular proteins were separated via 15% SDS-PAGE for pPERK/PERK and 10% SDS-PAGE for peIF2α/eIF2α, then transferred to a nitrocellulose membrane. The blots were probed overnight with primary Abs at 4°C. As a control for equal protein loading, membranes were stripped and reprobed for Lamin A/C or β-actin. Representative blots from at least three independent experiments are shown.</p

    HLA-B35, TG, and Poly(I:C) upregulate ET-1 mRNA and protein in HDMECs.

    No full text
    <p>Upregulation of PPET-1 mRNA after HLA-B35 (or HLA-B8), TG, or Poly(I:C) treatments alone (a) or in combination (c) in HDMECs. Confluent dishes of HDMECs were transduced with 10 MOI of Adenovirus encoding HLA-B35/GFP (Ad-HLA-B8/GFP) for 48 h or treated with 10pM TG, or 2.5 µg/µl Poly(I:C) for 24 hours. Total RNA was extracted and mRNA levels of PPET-1 were quantified by quantitative RT-PCR. Expression of the housekeeping gene β-actin served as an internal positive control in each assay performed. After measurement of the relative fluorescence intensity for each sample, the amount of each mRNA transcript was expressed as a threshold cycle value. (b) Bioactive 21-aa ET-1 peptide in HDMECs after Ad-B35/GFP (Ad-B8/GFP), TG, or Poly(I:C) treatment. ET-1 protein was measured by ELISA in the supernatants. The average protein concentration for each group is represented as a bar ± SE. *p  = 0.05; **p  = 0.001 <b>(d)</b> Immunofluorescence was performed using mouse monoclonal MHC class I Ab (W6/32) in HDMECs transduced with HLA-B35 (Ad-B35/GFP), Ad-B8/GFP and Ad- G0/GFP (virus control). Left column DAPI, middle column GFP, right column HLA. Bar: 100 µm.</p

    ER stress and Poly(I:C) activate selected ER stress/UPR pathways.

    No full text
    <p>ATF4 (a, b), XBP1 splicing (c) and ATF6 (d) mRNA levels in HDMECs treated with HLA B35 (HLA-B8), TG, and Poly(I:C) alone or in combination. Confluent dishes of HDMECs were transduced with 10 MOI of Ad-B35/GFP (or Ad- B8/GFP) for 48 h treated with 10pM TG, or 2.5 µg/µl Poly(I:C) for 24 hours. Total RNA was extracted and mRNA levels of transcription factors were examined by quantitative RT-PCR. Expression of the housekeeping gene β-actin served as an internal positive control in each assay performed. After measurement of the relative fluorescence intensity for each sample, the amount of each mRNA transcript was expressed as a threshold cycle value. *<i>p</i>  = 0.05; **<i>p</i>  = 0.001.</p

    Poly(I:C) induces ET-1 gene through the PKR-dependent activation of the eIF2α/ATF4 pathway.

    No full text
    <p>80% confluency, HDMECs were treated with 20 nM PKR siRNA (siSCR) with or without Poly(I:C) treatment (a and b). Total RNA was extracted and mRNA level of PKR (a) and PPET1 (b) were quantified by quantitative RT-PCR. Expression of the housekeeping gene β-actin served as an internal positive control in each assay performed. After measurement of the relative fluorescence intensity for each sample, the amount of each mRNA transcript was expressed as a threshold cycle value. 20 µg of nuclear extract were separated via 15% SDS-PAGE for ATF4 (c), 20 µg of total cell lysate were separated via 10% SDS-PAGE for peIF2α/eIF2α (d), then transferred to a nitrocellulose membrane. The blots were probed overnight with primary Abs at 4°C. As a control for equal protein loading, membranes were stripped and reprobed for Lamin A/C or β-actin. Representative blots of at least three experiments are shown. (e) Expression of ATF4 by real-time PCR analysis of skin mRNA from C57B1/6 WT (n = 10), C57B1/6 IFNAR1−/− (n = 8) and C57B1/6 TRIF/TICAM −/− (n = 6) mice 1 week after subcutaneous insertion of osmotic pumps containing Poly(I:C). Fold-change shown in the graphs is normalized to mRNA expression by one of the control mice. *<i>p</i>  = 0.05; **<i>p</i>  = 0.001 (f) ATF4 protein expression in dermal biopsies obtained from C57Bl/6 WT mice 1 week after subcutaneous insertion of osmotic pumps containing Poly(I:C) or PBS (as control), and processed for immunohistochemistry as described under Methods. Representative images of microvessels from PBS and Poly(I:C) skin is shown. Bar: 20 µm, 10 µm.</p

    Transcriptional upregulation of ET-1 by ER stress and Poly(I:C) is mediated through the ATF4/cJUN complex.

    No full text
    <p>Cell lysates from the HLA-B35 (HLA-B8), TG, or Poly(I:C) treated HDMECs were immunoprecipitated with cJUN (a) or NF-κB p65 antibodies (b) and then analyzed for ATF4 by western blot. Cells were transfected with the luciferase reporter driven by the −650/+172–bp fragment of the human ET-1 promoter (c) or with the −193-bp ppET-1-prom-luc construct (wild type) or constructs with specific mutations in the AP-1 binding site (d). 24 hours post transfection with the indicated plasmids, cells were stimulated with HLA-B35 (HLA-B8) Ads, TG and Poly(I:C) for an additional 24 h. Transfections were normalized using pSVgalactosidase control vector. Basal and induced luciferase activity was measured by luminometry. The graph represents fold change in promoter activity in response to various treatments in comparison with control promoter, which was arbitrarily set at 1. (e) Schematic diagram showing PKR and PERK induced activation of the eIF2α-ATF4 axis followed by the protein complex formation with c-JUN and induction of the ET-1 gene transcription through the AP1 response element.</p
    corecore