494 research outputs found

    Advances in leprosy immunology and the field application: a gap to bridge

    Get PDF
    Advances concerning the hosts' immune response to Mycobacterium leprae infection have focused on elucidating the immune pathomechanisms involved, with the hope that predictive diagnostic and prognostic parameters (biomarkers) for field use would emerge; however, improvements in our understanding of the immunologic responses to this complex disease have, to date, somewhat failed to provide the effective and robust methods for improving its predictive diagnosis in the field situation, particularly in those patients suffering from paucibacillary disease. In this contribution we have attempted to review some of the advances both in the immunology and immunopathology of leprosy, and also highlight the limited clusters of immune parameters that are now available. Most importantly, we point out the limitations that still prevail in the provision of effective biomarkers in the field situation for either: (1) the diagnosis of indeterminate disease, (2) predictive diagnosis of individuals developing reactional states, (3) monitoring efficacy of treatment, or (4) monitoring treatment of reactional state

    Amyotrophic Lateral Sclerosis, a Multisystem Pathology: Insights into the Role of TNF\u3b1

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is considered a multifactorial, multisystem disease in which inflammation and the immune system play important roles in development and progression. The pleiotropic cytokine TNF\u3b1 is one of the major players governing the inflammation in the central nervous system and peripheral districts such as the neuromuscular and immune system. Changes in TNF\u3b1 levels are reported in blood, cerebrospinal fluid, and nerve tissues of ALS patients and animal models. However, whether they play a detrimental or protective role on the disease progression is still not clear. Our group and others have recently reported opposite involvements of TNFR1 and TNFR2 in motor neuron death. TNFR2 mediates TNF\u3b1 toxic effects on these neurons presumably through the activation of MAP kinase-related pathways. On the other hand, TNFR2 regulates the function and proliferation of regulatory T cells (Treg) whose expression is inversely correlated with the disease progression rate in ALS patients. In addition, TNF\u3b1 is considered a procachectic factor with a direct catabolic effect on skeletal muscles, causing wasting. We review and discuss the role of TNF\u3b1 in ALS in the light of its multisystem nature

    Systemic and Local Corticosteroid Use Is Associated with Reduced Executive Cognition, and Mood and Anxiety Disorders

    Get PDF
    Background: Use of local corticosteroids, especially the inhaled types, has increasingly been associated with systemic uptake and consequent adverse effects. In this study, we assessed the associations between the use of different corticosteroid types with cognitive and neuropsychiatric adverse effects related to high glucocorticoid exposure. Methods: In 83,592 adults (mean age 44 years, 59% women) of the general population (Lifelines Cohort Study), we analyzed the relationship between corticosteroid use with executive cognitive functioning (Ruff Figural Fluency Test), and presence of mood and anxiety disorders (Mini-International Neuropsychiatric Interview survey). We performed additional exploration for effects of physical quality of life (QoL; RAND-36), and inflammation (high-sensitive C-reactive protein [CRP]). Results: Cognitive scores were lower among corticosteroid users, in particular of systemic and inhaled types, when compared to nonusers. Users of inhaled types showed lower cognitive scores irrespective of physical QoL, psychiatric disorders, and high-sensitive CRP. Overall corticosteroid use was also associated with higher likelihood for mood and anxiety disorders. Users of inhaled corticosteroids were more likely to have mood disorders (OR 1.40 [95% CI 1.19-1.65], p < 0.001) and anxiety disorders (OR 1.19 [95% CI 1.06-1.33], p = 0.002). These findings were independent of physical QoL. A higher likelihood for mood disorders was also found for systemic users whereas nasal and dermal corticosteroid users were more likely to have anxiety disorders. Conclusions: Commonly used local corticosteroids, in particular inhaled types, and systemic corticosteroids are associated with reduced executive cognitive functioning and a higher likelihood of mood and anxiety disorders in the general adult population

    Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster

    Get PDF
    Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight

    Reduced expression of the glucocorticoid receptor in the hippocampus of patients with drug-resistant temporal lobe epilepsy and comorbid depression

    Get PDF
    Objective: Depressive disorders are common among about 50% of the patients with drug-resistant temporal lobe epilepsy (TLE). The underlying etiology remains elusive, but hypothalamus-pituitary-adrenal (HPA) axis activation due to changes in glucocorticoid receptor (GR) protein expression could play an important role. Therefore, we set out to investigate expression of the GR in the hippocampus, an important brain region for HPA axis feedback, of patients with drug-resistant TLE, with and without comorbid depression. Methods: GR expression was studied using immunohistochemistry on hippocampal sections from well-characterized TLE patients with depression (TLE + D, n = 14) and without depression (TLE − D, n = 12) who underwent surgery for drug-resistant epilepsy, as well as on hippocampal sections from autopsy control cases (n = 9). Video–electroencephalography (EEG), magnetic resonance imaging (MRI), and psychiatric and memory assessments were performed prior to surgery. Results: Abundant GR immunoreactivity was present in dentate gyrus granule cells and CA1 pyramidal cells of controls. In contrast, neuronal GR expression was lower in patients with TLE, particularly in the TLE + D group. Quantitative analysis showed a smaller GR+ area in TLE + D as compared to TLE − D patients and controls. Furthermore, the ratio between the number of GR+/NeuN+ cells was lower in patients with TLE + D as compared to TLE − D and correlated negatively with the depression severity based on psychiatric history. The expression of the GR was also lower in glial cells of TLE + D compared to TLE − D patients and correlated negatively to the severity of depression. Significance: Reduced hippocampal GR expression may be involved in the etiology of depression in patients with TLE and could constitute a biological marker of depression in these patients.Fil: D`alessio, Luciana. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Centro Universitario de Neurología "Dr. José María Ramos Mejía".; ArgentinaFil: Mesarosova, Lucia. University of Amsterdam; Países BajosFil: Anink, Jasper J.. University of Amsterdam; Países BajosFil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Centro Universitario de Neurología "Dr. José María Ramos Mejía".; ArgentinaFil: Solis, Patricia Cristina Lourdes. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Centro Universitario de Neurología "Dr. José María Ramos Mejía".; ArgentinaFil: Oddo, Silvia Andrea. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Centro Universitario de Neurología "Dr. José María Ramos Mejía".; ArgentinaFil: Konopka, Hector Felix. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Centro Universitario de Neurología "Dr. José María Ramos Mejía".; ArgentinaFil: Iyer, Anand M.. University of Amsterdam; Países BajosFil: Mühlebner, Angelika. University of Amsterdam; Países BajosFil: Lucassen, Paul J.. University of Amsterdam; Países BajosFil: Aronica, Eleonora. University of Amsterdam; Países Bajos. Stichting Epilepsie Instellingen Nederland; Países BajosFil: van Vliet, Erwin A.. University of Amsterdam; Países Bajo

    Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants

    Get PDF
    To study stability and inheritance of two different transgenes in barley, we crossed a homozygous T8 plant, having uidA (or gus) driven by the barley endosperm-specific B1-hordein promoter (localized in the near centromeric region of chromosome 7H) with a second homozygous T4 plant, having sgfp(S65T) driven by the barley endosperm-specific D-hordein promoter (localized on the subtelomeric region of chromosome 2H). Both lines stably expressed the two transgenes in the generations prior to the cross. Three independently crossed F1 progeny were analyzed by PCR for both uidA and sgfp(S65T) in each plant and functional expression of GUS and GFP in F2 seeds followed a 3:1 Mendelian segregation ratio and transgenes were localized by FISH to the same location as in the parental plants. FISH was used to screen F2 plants for homozygosity of both transgenes; four homozygous plants were identified from the two crossed lines tested. FISH results showing presence of transgenes were consistent with segregation ratios of expression of both transgenes, indicating that the two transgenes were expressed without transgene silencing in homozygous progeny advanced to the F3 and F4 generations. Thus, even after crossing independently transformed, homozygous parental plants containing a single, stably expressed transgene, progeny were obtained that continued to express multiple transgenes through generation advance. Such stability of transgenes, following outcrossing, is an important attribute for trait modification and for gene flow studies

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Palliative care early in the care continuum among patients with serious respiratory illness an official ATS/AAHPM/HPNA/SWHPN policy statement

    Get PDF
    Background: Patients with serious respiratory illness and their caregivers suffer considerable burdens, and palliative care is a fundamental right for anyone who needs it. However, the overwhelming majority of patients do not receive timely palliative care before the end of life, despite robust evidence for improved outcomes. Goals: This policy statement by the American Thoracic Society (ATS) and partnering societies advocates for improved integration of high-quality palliative care early in the care continuum for patients with serious respiratory illness and their caregivers and provides clinicians and policymakers with a framework to accomplish this. Methods: An international and interprofessional expert committee, including patients and caregivers, achieved consensus across a diverse working group representing pulmonary–critical care, palliative care, bioethics, health law and policy, geriatrics, nursing, physiotherapy, social work, pharmacy, patient advocacy, psychology, and sociology. Results: The committee developed fundamental values, principles, and policy recommendations for integrating palliative care in serious respiratory illness care across seven domains: 1) delivery models, 2) comprehensive symptom assessment and management, 3) advance care planning and goals of care discussions, 4) caregiver support, 5) health disparities, 6) mass casualty events and emergency preparedness, and 7) research priorities. The recommendations encourage timely integration of palliative care, promote innovative primary and secondary or specialist palliative care delivery models, and advocate for research and policy initiatives to improve the availability and quality of palliative care for patients and their caregivers. Conclusions: This multisociety policy statement establishes a framework for early palliative care in serious respiratory illness and provides guidance for pulmonary–critical care clinicians and policymakers for its proactive integration

    Tuberous sclerosis complex neuropathology requires glutamate-cysteine ligase

    Get PDF
    Introduction: Tuberous sclerosis complex (TSC) is a genetic disease resulting from mutation in TSC1 or TSC2 and subsequent hyperactivation of mammalian Target of Rapamycin (mTOR). Common TSC features include brain lesions, such as cortical tubers and subependymal giant cell astrocytomas (SEGAs). However, the current treatment with mTOR inhibitors has critical limitations. We aimed to identify new targets for TSC pharmacotherapy. Results: The results of our shRNA screen point to glutamate-cysteine ligase catalytic subunit (GCLC), a key enzyme in glutathione synthesis, as a contributor to TSC-related phenotype. GCLC inhibition increased cellular stress and reduced mTOR hyperactivity in TSC2-depleted neurons and SEGA-derived cells. Moreover, patients’ brain tubers showed elevated GCLC and stress markers expression. Finally, GCLC inhibition led to growth arrest and death of SEGA-derived cells. Conclusions: We describe GCLC as a part of redox adaptation in TSC, needed for overgrowth and survival of mutant cells, and provide a potential novel target for SEGA treatment. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0225-z) contains supplementary material, which is available to authorized users

    Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Decreased expression of inwardly rectifying potassium (Kir) channels in astrocytes and glioma cells may contribute to impaired K<sup>+</sup> buffering and increased propensity for seizures. Here, we evaluated the potential effect of inflammatory molecules, such as interleukin-1β (IL-1β) on Kir4.1 mRNA and protein expression.</p> <p>Methods</p> <p>We investigated Kir4.1 (Kcnj10) and IL-1β mRNA expression in the temporal cortex in a rat model of temporal lobe epilepsy 24 h and 1 week after induction of status epilepticus (SE), using real-time PCR and western blot analysis. The U373 glioblastoma cell line and human fetal astrocytes were used to study the regulation of Kir4.1 expression in response to pro-inflammatory cytokines. Expression of Kir4.1 protein was also evaluated by means of immunohistochemistry in surgical specimens of patients with astrocytic tumors (<it>n</it> = 64), comparing the expression in tumor patients with (<it>n</it> = 38) and without epilepsy (<it>n</it> = 26).</p> <p>Results</p> <p>Twenty-four hours after onset of SE, Kir4.1 mRNA and protein were significantly down-regulated in temporal cortex of epileptic rats. This decrease in expression was followed by a return to control level at 1 week after SE. The transient downregulation of Kir4.1 corresponded to the time of prominent upregulation of IL-1β mRNA. Expression of Kir4.1 mRNA and protein in glial cells in culture was downregulated after exposure to IL-1β. Evaluation of Kir4.1 in tumor specimens showed a significantly lower Kir4.1 expression in the specimens of patients with epilepsy compared to patients without epilepsy. This paralleled the increased presence of activated microglial cells, as well as the increased expression of IL-1β and the cytoplasmic translocation of high mobility group box 1 (HMGB1).</p> <p>Conclusions</p> <p>Taken together, these findings indicate that alterations in expression of Kir4.1 occurring in epilepsy-associated lesions are possibly influenced by the local inflammatory environment and in particular by the inflammatory cytokine IL-1β.</p
    corecore