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Artificial gravity partially protects space-induced
neurological deficits in Drosophila melanogaster
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In brief

Mhatre et al.’s ISS-based multi-modal
study provides insights into CNS
responses to spaceflight and evaluates
artificial gravity (AG) as a potential
countermeasure. AG provides partial
protection to the neurological deficits
observed in flies reared in spaceflight
microgravity (SFug); the deficits
progressively worsen with postflight
acclimation to Earth conditions.
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SUMMARY

Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is
important for future missions. We report CNS changes in Drosophila aboard the International Space Station
in response to spaceflight microgravity (SFug) and artificially simulated Earth gravity (SF1g) via inflight centri-
fugation as a countermeasure. While inflight behavioral analyses of SFug exhibit increased activity, postflight
analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-
omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both
SFug and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell
count alterations, oxidative damage, and apoptosis, are seen only in SFug. Additionally, progressive
neuronal loss and a glial phenotype in SF1g and SFug brains, with pronounced phenotypes in SFug, are
seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects

the CNS from the adverse effects of spaceflight.

INTRODUCTION

Exploration missions to the Moon and Mars would expose astro-
nauts to environmental challenges, including gravitational
changes, ionizing radiation, altered circadian rhythm, elevated
CO», and isolation. Human acclimation to these environments
presents complex health effects, with acute and prolonged con-
sequences in multiple tissues that may result in increased risk to
crew health and performance during the mission (Afshinnekoo
et al.,, 2020; Crucian et al., 2015; Garrett-Bakelman et al.,
2019; Grimm et al., 2016; Indo et al., 2016; Kononikhin et al.,
2017; Wilson et al., 2018). With a high concentration of oxidiz-
able, unsaturated lipids, low levels of antioxidant defenses,
and high energy demand, the central nervous system (CNS) is

particularly vulnerable to space stressors, with studies reporting
behavioral deficits in spatial orientation, coordination, and loco-
motion, as well as cognition (Cekanaviciute et al., 2018; Clément
et al., 2020; Salim, 2017; Friedman, 2011).

Spanning over 60 years of research, the short-term impacts of
spaceflight on the CNS have been investigated, but there is still
insufficient data regarding its long-term health risks (Clément
et al., 2020). Also, there are limitations to evaluating the impact
of CNS damage in humans. Therefore, there is a need to leverage
research approaches using animal models that would aid in
cellular, molecular, and mechanistic understanding of CNS re-
sponses to spaceflight. Recent literature has established the fruit
fly as a valuable model for understanding the effects of micro-
gravity (ug), hypergravity, and radiation in the spaceflight
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Figure 1. Inflight behavioral analysis shows hyperactivity in microgravity

(A) Schematic of MVP-Fly01 mission outline depicting the 34-day mission on ISS. Camera represents inflight videos that were recorded to monitor fly health and
behavior. Onboard operations included freezing the food cylinders containing flies and larvae in RNAlater for omics analysis. Live flies were returned to Earth.
Following the telemetry and timeline of the mission, matched Earth controls were performed (Earth).

(B) Experimental timeline highlighting the onboard operations and postflight R+0 and R+25 assays.

(C) Computation of fly activity by MIP. (i) The first frame from one video recorded during the mission. (i) The negative of the blue channel in grayscale of the first
frame with two flies circled in green and red. (i) The MIP image captures the movement (blue and red arrows) and no movement (green) of the flies. (iv) Final MIP
projection used in the algorithm. The white tracks represent flies that moved at any point during the recording.

(D) Fly activity mapped overtime for 16 days (mission days 13-28). Each row represents one adult fly chamber in an individual MVP module, and across from left to
right is a temporal progression with every six rectangles (each rectangle = 28-s video recording) spanning a single 12-h light period. The color bar represents the
activity level from a minimum background intensity (dark blue) to the highest activity level intensity (bright green). Top six rows correspond to SF1g flies and the

bottom five to SFug flies.

(E) Line graphs show increased activity levels across mission days 13-28 averaged over each day across modules for each population set (n = 5-73). *p < 0.05.

Error bars represents SEM.

environment (Hateley et al., 2016; Hosamani et al., 2016; lkenaga
et al., 1997; Marcu et al., 2011; Ogneva et al., 2016). With their
small size, short generation time (~10 days), short lifespan
(~60-80 days), large number of offspring, and low cost of rear-
ing, flies mitigate many of the practical concerns stemming
from performing long-term, multi-generational studies in space.

Here, we present the results of an International Space Station
(ISS)-based study, Multi-use Variable-gravity Platform (MVP)-
Fly-01, to understand the effects of spaceflight on the fly nervous
system and the value of artificial gravity (AG) as a countermea-
sure. AG is an attractive countermeasure since it can potentially
ameliorate the effect of ng on multiple physiological systems by
simulating Earth-like gravity (Clément, 2017; Clément and Traon,
2004; Horie et al., 2019; Shiba et al., 2017; Young, 1999). We per-
formed behavioral analyses, brain immunohistochemistry, pro-
teomics, and transcriptomics on flies subjected to spaceflight
microgravity (SFug), inflight artificially simulated Earth gravity
(SF1g), and environmentally matched ground control (Earth).
Our results showed inflight and postflight behavioral changes
and morphological alterations in the brain immediately postflight
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in response to ug. Further, acclimation to Earth following space-
flight revealed brain morphological changes in both SF1g and
SFug flies, with pronounced phenotypes in SFug. These results,
in combination with metabolic pathways altered in transcrip-
tomic and proteomic studies on fly heads frozen on the ISS, pro-
vide comprehensive information on the effects of inflight AG
exposure on CNS and postflight acclimation to Earth conditions.

RESULTS

The MVP-Fly-01 mission

The ISS is a useful environment for studying the effects of space-
flight by combining a png environment with ionizing radiation and
CO, levels that are elevated compared with Earth’s surface
(McDonald et al., 2020). The MVP-Fly-01 validation mission
(34 days) has enabled comprehensive investigations of the fly
CNS (Figure 1A). The two inflight centrifuges in the MVP hardware
allowed us to maintain one centrifuge at ng (SFug) with the flies
developing entirely in ng, while the other centrifuge simulated
Earth’s gravitational force (SF1g) on ISS and acted as a
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high-fidelity, on-orbit control for gravity. In other words, the space-
flown flies experienced identical environmental perturbations dur-
ing takeoff and landing and were maintained in identical hardware
and similar gas composition, sound pressure levels, temperature,
and radiation environments in space but were reared either undera
1g force in space or in pg. Upon completing the mission, a post-
flight ground control experiment was performed on Earth (Earth)
using the same flight hardware and precisely simulating space-
flight conditions. The flies retrieved upon completion of the mission
were used for behavioral, morphological, and acclimation ana-
lyses to study the effects of spaceflight on the CNS (Figure 1B).

SFpg flies exhibit increased activity on ISS

We developed an automated quantification algorithm that com-
putes the maximum intensity projections (MIPs) of video record-
ings of fly behavior (represented in Videos S1 and S2) during
spaceflight and sums pixel intensities to produce numerical
values representative of fly activity levels (higher numerical values
correlate with high fly activity), accounting for both the emergence
of flies and their movement during the 12-h light period (Figure 1C).
Since the fly population sizes in adult fly chamber 1 were not sta-
tistically different between SF1g and SFug (Figure S2), any differ-
ence in MIP intensity between these two groups reflected differ-
ences in fly activity. We generated a color map showing the
relative numerical activity in adult fly chamber 1 as a function of
mission timeline (days 13-28) for each module grouped as either
SF1g or SFug (Figure 1D). Upon quantification, we found that the
overall activity level of the SF1g flies is significantly below SFug
flies (Figure 1E). On mission days 20 and 28, there is no distin-
guishable difference in the activity for the two gravity levels.
This is possibly due to the initial emergence of flies into the adult
fly chamber around day 20 that causes a similar increase in activ-
ity in both SF1g and SFug environments. On day 28, the high den-
sity of flies in both conditions may result in close proximity of the
flies, thereby increasing their activity levels. The results show that
within the closely matched fly populations maintained in space-
flight, flies exposed to pug conditions show significantly greater
levels of activity than their 1g counterparts.

Flies exposed to ng conditions show behavioral and
neuronal deficits, glial alterations, oxidative damage,
and apoptosis

Upon landing, a subset of F1 flies were first used for behavioral
assays to measure climbing ability. Climbing ability is the fly’s
innate negative geotactic response and is routinely used to
assess nervous system dysfunction in fly models (Chakraborty
etal,, 2011; lijima et al., 2004). This behavior relies on the integrity
of the connection between the brain and muscles. Specifically, it
involves the mushroom body, which is the part of the brain that
regulates the transition from rest to responsiveness in relation
to environmental stressors (Martin et al., 1998). To capture the
sexually dimorphic responses, we assessed males and females
separately in our analysis. We observed that males born in ng
were more affected with significant deficits in climbing ability
compared with Earth males (Figure 2A). A decreasing trend
was also observed in SFug females and SF1g (males and fe-
males) compared with their respective Earth control. Addition-
ally, we noted a significant decrease in climbing ability in SFug
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males compared with SFug females. This result is consistent
with the previously observed reduction in postflight climbing
response in males exposed to pg (Benguria et al., 1996).

We then dissected the adult fly brains and stained them with
neuronal (anti-ELAV) (Figure 2B), apoptotic (anti-CC3), and oxida-
tive stress-associated DNA damage (anti-8-oxo-dG) (Figure 2E)
markers. Upon quantification, we observed a slight yet significant
reduction in the total brain area of SFug female flies compared with
both Earth and SF1g females; males showed no change in brain
sizes (Figure S3A). Morphological quantification with anti-ELAV
staining showed a significant decrease in neuronal cortex area
(Figures 2B, 2C, and S3B) in SFug flies compared with Earth and
SF1g control flies in both sexes. Similarly, the neuropil area is
significantly reduced in SFug compared with Earth flies (Figure 2D).
Asimilar phenotype was noted in the Alzheimer’s disease fly model
accompanied by behavioral deficits (Mhatre et al., 2014). No signif-
icant differences in neuronal cortex and neuropil areas were
observed in SF1g compared with Earth flies (Figures 2C and 2D).
A marked increase in CC3-positive apoptotic puncta (Figures 2E
and 2H) and 8-oxo-dG-positive cells (Figures 2E and 2I) was
observed in flies subjected to SFug compared with Earth and
SF1g controls. Apoptotic cells were detected throughout the brain,
and many of them colocalized with the ELAV marker (Figure S3Cv).
Additionally, all the 8-oxo-dG-positive cells colocalize with
neuronal ELAV marker, suggesting oxidative damage in neuronal
cells (Figure S3Civ, marked with green arrowhead). The observed
oxidative stress response has been documented in previous
spaceflight and ground-based altered gravity studies in mice
and flies (Hateley et al., 2016; Hosamani et al., 2016; Mao et al.,
2016, 2018b, 2020; da Silveira et al., 2020).

Another subset of brains was stained with glial (anti-repo) and
dopaminergic neuron (anti-TH) (Figure 2E) markers. Gross analysis
of the total number of dopaminergic (DA) neurons revealed a
reduction in DA neuron count in SFug compared with SF1g and
Earth fly brains in both sexes (Figures 2E and 2F). Like the climbing
behavior, we observed significantly lowered DA neurons in SFug
males compared with SFug females, suggesting sensitivity of
male flies to ug. DA neurons are involved in locomotion, and the
lack of these neurons has been identified in the development of
Parkinson’s disease in humans (Ryczko and Dubuc, 2017). We
also observed a significant increase in DA neurons in SF1g males
compared with the Earth males; this may be part of a phenotype
resulting from exposure to a 1g centrifugal force on flies that are
also perturbed by a combination of spaceflight stressors —ionizing
radiation and elevated CO. levels. In the case of glia, SFug females
and SF1g (both males and females) displayed an increasing trend
in glial cell number compared with Earth controls. However, the
SFug males showed a decreasing trend in the glial population
compared with Earth males (Figure 2E and 2G) and a significant
reduction in the glial population compared with SF1g males.
Further experiments are necessary to study the sex specificity of
the spaceflight effects and the underlying mechanisms contrib-
uting to these differences in glial cell populations.

The SF1g and Earth flies were exposed to similar temperature,
humidity, CO,, and sound pressure levels; however, ionizing radi-
ation was an additional spaceflight stressor experienced by the
SF1g flies compared with the Earth flies. Thus, the similarity in
morphological phenotype between SF1g and Earth control flies

Cell Reports 40, 111279, September 6, 2022 3
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Figure 2. CNS-associated deficits in microgravity flies
(A) Decreased climbing ability of space-flown flies (n = 90-120).
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(B) Representative image of fly brain stained with neuronal marker anti-ELAV; neuronal cortex marked by the dashed outer white line and neuropil marked by the

dashed inner yellow line.

(C and D) Quantification shows decrease in neuronal cortex area (C) and neuropil area (D) in SFug compared with both Earth and SF1g controls (n = 10-14).
(E) Representative images of fly brains labeled with anti-TH (green), anti-repo (red), anti-CC3 (white), and anti-8-oxo-dG (cyan).

(F-1) Quantification showed significant loss in DA neurons (F) (n = 6-9) and alterations in glial numbers (G) (n = 5-9), apoptosis (H) (n = 5-7), and oxidative DNA
damage (I) (n = 5-7) in SFug condition. Two-way ANOVA results are displayed above the histogram. Significance calculated by post-hoc test is represented as
*p < 0.05; **p < 0.01; ***p < 0.001. Scale bar represents 50 microns. Error bars represents SEM.

in many of the readouts analyzed here, including behavior,
neuronal cortex and neuropil areas, apoptosis, and oxidative
damage (Figure 2), suggests that radiation alone may not be a sig-
nificant contributing factor for the immediate postflight CNS ef-
fects of spaceflight. However, ionizing radiation may contribute
to some of the long-term effects of spaceflight on the CNS and
are discussed further in a later section. The entire experiment
occurred over a short duration (34 days), and the radiation envi-

4 Cell Reports 40, 111279, September 6, 2022

ronment in low-Earth orbit (LEO) is known to be more benign
than the environment in deep space, beyond the Van Allen belts
(Nelson, 2016). Therefore, the gross physiological changes
induced in LEO flights like on the ISS, as observed in SFug flies,
at least for the CNS immediately postreturn, may primarily be
associated with changes in gravity. Thus, these results indicate
that gravity can play a key role in the LEO environment, causing
neuronal and neurobehavioral deficits during spaceflight.
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Figure 3. Global overview of multi-omics analysis on flies frozen in space

(A) Schematic showing transcriptomics and proteomics sample processing. Table provides a global view of the total number of differentially up- and down-
regulated genes (DEGs) and proteins (DEPs) in SF1g and SFug compared with Earth control.

(B) Upset plot displays top 30 intersections across omics platforms and between conditions (SF1g males, SF1g females, SFug males, SFug females). The purple
horizontal bars indicate the total number of DEGs and DEPs identified in each condition. The dotted region shows all conditions, and connecting lines with black
nodes show overlap across omics platforms (DEGs and DEPs), whereas orange nodes show overlap across different conditions in DEGs and green nodes show

(legend continued on next page)
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Global omics analysis highlights spaceflight-induced
altered genes and proteins in the brain

Transcriptomics and proteomics analyses were performed on
the heads of flies that were developed entirely on ISS under
SFug or SF1g conditions and Earth controls (Figure 3A). RNA
sequencing (RNA-seq) on heads from SFug flies compared
with Earth controls showed differential expression of 1,014
genes in females and 507 genes in males, while proteomics anal-
ysis revealed differential expression of 577 proteins in females
and 719 proteins in males. RNA-seq in SF1g flies compared
with Earth-reared flies showed differential expression of 80
genes in females and 601 genes in males, and proteomics anal-
ysis revealed differential expression of 389 proteins in females
and 425 proteins in males (Figure 3A). Overall, these results sug-
gest alterations in transcripts and protein levels when flies are
reared in space conditions compared with in Earth condition. A
full list of differentially expressed genes (DEGs) and differentially
expressed proteins (DEPs) is provided in Tables S1 and S2.
Further, to understand the overlap across the transcriptomics
and proteomics as well as across the different experimental con-
ditions, we generated an UpSet diagram displaying top 30 inter-
sections (Figure 3B). The overlap between the DEGs (orange
dots and bars) and DEPs (green dots and bars) for the experi-
mental conditions is shown and across DEGs and DEPs are
marked in black. Also shown are the genes and proteins unique
to each condition (gray dots and bars). The intersection within
DEPs across experimental conditions yields more hits compared
with DEGs. This is evidenced by 167 significantly altered proteins
(adjusted p value [adj. p] < 0.05) compared with 25 significantly
altered genes (adj. p < 0.05) in SF1g and SFug conditions
compared with Earth controls (Figures 3B, S4A, and S4B). The
observed overlapping DEPs and DEGs are potential spaceflight
signatures irrespective of gravity that can be further investigated.
Additionally, though we observe minimal overlap across both
transcriptomic and proteomic platform, the common processes
possibly share a transcriptional mechanism of dysregulation,
hence making these processes central towards the phenotype
manifested in spaceflight flies. For example, as shown in the
case of SFug females compared with Earth females, the Gene
Ontology (GO) analysis of overlapping DEPs and DEGs (65) re-
vealed enrichment of key biological processes (BPs), cellular
components (CCs), and molecular functions (MFs) that closely
regulate mitochondrial functions, metabolic processes, immune
response, and synaptic signaling, among others (Figure S4C).

Focused analysis reveals differential alteration in
metabolic pathways and oxidative phosphorylation in
space-reared flies

The spaceflight conditions (SF1g and SFug) compared with Earth
were analyzed across the omics platforms. Figure 3C highlights
the top 20 significantly enriched GO BPs, including cuticle devel-
opment, oxidative phosphorylation, electron transport chain,
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metabolic processes, response to heat, protein folding, neuro-
transmitter secretion, synaptic vesicle signaling, and retinal ho-
meostasis, among others. The enrichment is more evident in pro-
teins compared with RNA. The complete list from GO enrichment
analysis (BPs, CCs, MFs)is provided in Tables S1 and S2. Further,
we note a sexually dimorphic response in the transcriptomic data-
set, which is not observed in proteomics analysis (Figure S5).

KEGG pathway enrichment analysis on the proteomics dataset
across conditions revealed sexual dimorphism at the pathway
enrichment level (more KEGG pathway enrichment in females
than males), which was more evident in SF1g than SFug condi-
tions. Proteomic data of SFug flies (males and females) show
enrichment of pathways such as endocytosis and cellular meta-
bolic responsive pathways—tyrosine metabolism, sucrose
metabolism, pyruvate metabolism, oxidative phosphorylation,
carbon metabolism, glutamate metabolism, glycolysis, fatty
acid metabolism, and amino acid metabolism (Figure 4A). These
metabolic pathways play critical roles in cellular as well as mito-
chondrial homeostasis. The metabolic reprogramming under
spaceflight conditions suggests metabolic and cellular stress,
similar to that observed in cancer and aging (Brooks Robey
etal., 2015; Wallace, 2005). Similar regulation of metabolic path-
ways is observed in other spaceflight-based mammalian studies,
including humans (Garrett-Bakelman et al., 2019; de Luca et al.,
2009; da Silveira et al., 2020; Stein, 2002). Analysis of cellular
respiration revealed perturbations in the BPs and CCs encom-
passing every step of the pathway, i.e., glucose metabolism, py-
ruvate metabolism, citric acid cycle (TCA), and electron transport
chain as well as at mitochondrial organelle level (Figures 4B and
4C). This is observed in both spaceflight conditions but is more
pronounced in SFug than SF1g (both sexes), suggesting differen-
tial regulation under the spaceflight stress + gravity vector.

At the mitochondrial level, an increase in PGAM5 and mito-
chondrial fission/fusion proteins such as dynamin-related pro-
tein 1 (DRP1) and OPA1 were observed, suggesting increased
mitochondrial dynamics (Figure 4D). We observed the upregu-
lation of many enzymes involved in glycolysis, such as hexoki-
nase C (HEXC) and fructose 1,6-bisphosphatase (FBP) (Fig-
ure 4E), suggesting increased glycolytic flux (Tanner et al.,
2018). Meanwhile, we observed an increase in lactate dehydro-
genase (LDH), suggesting funneling of glycolysis products to-
ward lactate production under spaceflight conditions. Another
key enzyme, AcCoAS, is downregulated, thereby reducing the
production of acetyl-coenzyme A (CoA), a key enzyme required
for the TCA cycle. Further, modulation of proteins involved in
oxidative phosphorylation/electron transport chain (ETC) is
noted (Figure 4F). While ETC proteins are differentially regu-
lated under both SF1g and SFug conditions, the number of pro-
teins dysregulated under SFug is more than the SF1g condi-
tion. In fact, differential regulation of at least one protein
associated with each of the five ETC complexes is observed
under SFug conditions (Figure 4G), which may contribute to

overlap across different conditions in DEPs. Gray nodes represent the DEGs and DEPs unique to a condition. The vertical bars indicate the number of unique or

overlapping genes/proteins.

(C) Dot plot representing top 20 significantly (adj. p < 0.05) enriched Gene Ontology (GO) terms in biological processes in SF1g and SFug compared with Earth
control. SF1g female RNA compared with Earth control did not have any enriched GO biological processes, hence they are not represented in the dot plot. The

color of the dot represents the adj. p value, and the size represents gene ratio.
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Figure 4. Metabolic pathways and cellular respiration affected by spaceflight
(A) Dot plot representing the KEGG pathways (p < 0.05) enriched in DEPs across different conditions. The size of the dot is based on the gene count enriched in the

pathways, and the color of the dot represents pathway significance.

(B and C) GO enrichment analysis. Dot plot showing GO terms (adj. p < 0.05) associated with cellular respiration in biological processes (B) and cellular com-
ponents (C) for SF1g and SFug (DEPs) compared with Earth control. The color of the dot represents the adj. p value, and the size represents gene ratio.
(D-F) Heatmap representation of differential expression (log2[fold changel]) of significantly altered (adj. p < 0.05) mitochondrial fusion/fission proteins (D),
glycolysis and pyruvate metabolism proteins (E), and proteins associated with oxidative phosphorylation (F) in SF1g and SFug versus Earth.

(G) Differentially expressed proteins (in red) in SFug females (versus Earth females) are mapped onto the oxidative phosphorylation KEGG pathway using KEGG

mapper.

(H and 1) Heatmap displays log2[fold change] of proteins that are significantly expressed (adj. p < 0.05) in fatty acid metabolism (H) and amino acid metabolism (I),

with red representing upregulated and blue for downregulated.

reactive oxygen species (ROS) production. Moreover, KEGG
pathway enrichment shows differential regulation of fatty acid
metabolism as well as amino acid metabolism. We observed
an upregulation of enzymes involved in fatty acid (Figure 4H)
and amino acid metabolism (Figure 4l), suggesting high energy
demand, thereby emphasizing cellular stress response under
spaceflight conditions (SFug> SF1g).

Spaceflight alters the expression of stress-inducible
proteins affecting CNS
During spaceflight, metabolic pathways are altered along with

the BPs associated with cellular stress, including response to

heat, response to ROS, ROS metabolic process, and cellular ho-
meostasis, thus indicating increased cellular stress (Figure 5A).
We see significant upregulation of heat shock proteins (HSPs)
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Figure 5. Increased cellular stress affects neuronal signaling in spaceflight
(A) Dot plot showing enriched GO terms (adj. p < 0.05) associated with cellular stress in biological processes and molecular function for SF1g and SFug (DEPs)

compared with Earth.

(B) Heatmap representation of differential expression (log2[fold change]) of significantly altered (adj. p < 0.05) cellular stress response proteins.
(C) Dot plot highlighting enriched GO terms (p < 0.05) associated with neuronal and synaptic signaling in biological processes, molecular function, and cellular

components across all conditions (DEPs).

(D) Heatmap displays log2[fold change] of proteins that are significantly altered (adj. p < 0.05) in synaptic transmission. For dot plot, the color of the dot represents
the adj. p value, and the size represents gene ratio. For the heatmap, the red color represents upregulated and blue shows downregulated proteins.

HSP70AB, HSP26, HSP23, HSP27, and HSP67BC in both
spaceflight conditions (Figure 5B). HSPs are the molecular chap-
erones with cytoprotective properties that are induced in
response to a variety of cellular insults, such as heat, radiation,
oxidative stress, and altered gravity, to confer protection against
deteriorating effects of ROS (Bukau et al., 2006; Hateley et al.,
2016; Hosamani et al., 2016; lkwegbue et al., 2018). Low
amounts of ROS aid in neuronal development and function, but
excessive ROS levels induced by oxidative stress lead to cellular
damage, increased blood-brain barrier permeability, and altered
brain morphology, causing neuroinflammation and neuronal
death (Gu, 2011). Our observations of increased neuronal loss,
apoptosis, and oxidative damage in the fly brain further confirm
the effects of oxidative stress during spaceflight (Figure 2). These
morphological defects in the brain correlate with the altered
expression of proteins that are enriched in functions such as
neuronal projection, neuron death, axonogenesis, and synaptic
transmission in SFug compared with Earth flies (Figure 5C).

In terms of neuronal functioning, we observed modulations in
proteins involved in synaptic transmission across all spaceflight
conditions (Figure 5D). For instance, SNARE protein syntaxin 1A
(SYX1A), syntaxin binding protein SNAP24, presynaptic calcium
sensor synaptotagmin (SYT), presynaptic calcium signaling pro-
tein P32, endocytic fission protein dynamin (SHI), and endocytic
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coat protein clathrin heavy chain (CHC) are downregulated.
Meanwhile, the vesicle-mediated transport protein GDI, an
NSF1 protein that aids in disassembly of SNARE complex
(COMT), cell-cell adhesion mediator protein FAS2, vesicular traf-
ficking protein ARF79F, and synapsin (SYN), a phosphoprotein
associated with synaptic vesicles, among others, are upregu-
lated. These proteins collectively encompass almost every
step of the synaptic vesicle cycle. The number of proteins altered
is higher in the SFug condition than in the SF1g, and within the
SFug condition, males show more changes than females, further
reinforcing the selective sensitivity toward males and a dose-
dependent response across spaceflight conditions. Additionally,
proteins associated with muscle and cytoskeleton are also noted
in spaceflight flies (SFug > SF1q) (Figures S5C and S5D), consis-
tent with previous spaceflight findings (Ogneva et al., 2016; Walls
et al., 2020).

Persistent effects of exposure to spaceflight

Proteomics analysis suggests enrichment of behavioral and aging
markers in SF1g and SFpg flies (Figure S6A). Specifically, the up-
regulation of HSP26, HSP27, HSP68, MTPalpha, CAT, SM,
TRXR-1, and LDH and the downregulation of DJ-1beta, MSRA,
and LEVY are observed across all conditions (Figure S6B). These
proteins are also associated with the oxidative stress response,
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(A-D) Stacked bar plots showing quantification of DA neurons (A) (n = 5-10), neuronal cortex area (B) (n = 10-14), apoptosis (C) (n = 5-7), and glia (D) at R+0 and

R+25 days.

(E) Representative images of R+25 fly brains labeled with anti-repo (red). Quantification of repo-positive cells at R+25 days showed total glial loss (D) and increase
in the aggregates/rosettes (F) (white box in E inset) in SFug and SF1g (n = 6-9). Two-way ANOVA results are displayed above the stacked bar plots. Significance
calculated by post-hoc test is represented as *p < 0.05; **p < 0.01; ***p < 0.001. Scale bar represents 50 microns. Error bars represents SEM.

which has been shown to increase with age (Lavara-Culebras and
Paricio, 2007; Liao et al., 2008; Long et al., 2020; Ren et al., 2017).
To further understand the effects of spaceflight as the flies accli-
mate to Earth’s gravity, we aged the flies for 25 days postreturn
under terrestrial conditions (R+25 days). Figure S7 shows the
observed changes at the R+25 time point for DA neuron counts,
neuronal cortex area, apoptosis, and glial phenotypes. Overall,
at the R+25 time point, the brain morphology of SF1g and SFug
is altered compared with Earth controls, with sex-specific
changes observed in the neuronal cortex area (Figure S7). We
then performed the longitudinal comparison of morphological
changes in fly brains between the R+0 (11-17 days old) and
R+25 (36-42 days old) time points. This paradigm is similar to
the postmission evaluation of astronauts as they acclimate to
Earth conditions over a period of time. Significant reduction of
DA neurons was observed early in SFug flies at the R+0 time point
compared with the gradual loss of these neurons in Earth and
SF1g flies at the R+25 time point (Figure 6A). Typically, terrestrial
conditions have not been associated with age-related loss of DA
neurons (White et al., 2010); however, the elevated levels of CO,
in Earth flies (analogous to SF1g and SFug) in this study may
contribute to the observed loss of DA neurons as the flies age in
the Earth control. Further, comparison of neuronal cortex areas

between R+0 and R+25 data showed no change in the Earth flies,
while a decreasing trend over time was noted in SF1g flies and a
significant reduction in SFug flies, thus suggesting increased
neuronal loss with age in space-reared flies (Figure 6B). This
loss correlates with increased apoptosis observed in R+25 flies,
both SF1g (39%) and SFug (70%), compared with R+25 Earth flies
(Figure 6C). This progressive increase in apoptosis in space-
reared flies (R+25 Earth < R+25 SF1g < R+25 SFug) may suggest
a dose-dependent response in flies as we move from Earth to
space conditions with exposure to multiple stressors, including
increased ionizing radiation combined with exposure to reduced
gravity.

Additionally, we assessed glia, the primary phagocytic cell in
the CNS that are required to clear neuronal debris induced by
oxidative stress (Bilimoria and Stevens, 2015; Casano and
Peri, 2015; Cronk and Kipnis, 2013; Cunningham, 2013;
Freeman, 2006; Hanisch and Kettenmann, 2007). At R+25, while
we observe a slight, but non-significant, increase in glial cell
numbers under Earth conditions (females: 7%, males: 17%), a
significant depletion of the glial population in Earth-acclimated
SF1g (females: 56%, males: 59%) and a sex-specific depletion
in SFug flies (females: 54%, males: 33%) are noted compared
with their respective R+0 time point (Figures 6D and 6E). This
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depletion of the glial population can be due to burdening of the
clearance system, eventually leading to glial apoptosis (Block
et al., 2007), but additional investigation is warranted. Further-
more, as the flies age, we observe aggregates of glial cells that
resemble rosettes (Figure 6E, inset). These rosettes were distinct
in size and appearance from other glial cells and were not
counted toward total repo-positive cell counts (Figure 6D);
instead, they were counted separately (Figure 6F). This rosette
phenotype is absent at the R+0 time point in all conditions,
whereas it is observed at the R+25 time point specifically after
exposure to spaceflight-related stressors in a dose-dependent
manner (R+25 Earth < R+25 SF1g <R+25 SFug) (Figure 6F).
We believe the rosette to be a phenotype manifested as a
long-term effect of the spaceflight environment. The rosette for-
mation could result from factors such as elevated COs levels and
could be exacerbated by the combinatorial effect of other space-
flight stressors such as ionizing radiation and reduced gravity.

While some of the immunohistochemical and omics results
described here resemble early aging, more assays at additional
time points need to be performed for further validation of the ef-
fect of spaceflight on related aging phenotypes. Although omics
profiling at the R+25 time point would be informative and will be
considered in future missions, these experiments were not
feasible here since the flies were distributed for the other assays
reported above. Taken together, the brain morphology at the
R+0 time point is similar in SF1g and Earth conditions, but as
the flies age postflight under terrestrial conditions, the morpho-
logical deficits start manifesting in SF1g flies and are worsened
over time in SFug flies, suggesting a phenotype that is mani-
fested after exposure to spaceflight.

DISCUSSION

Deep-space exploration will expose space travelers to several
environmental challenges, thereby altering the homeostatic
equilibrium of various physiological systems, including the
CNS. Understanding the risks to the CNS and identifying coun-
termeasures to mitigate these risks in astronauts will be crucial
to ensure the success of missions to the Moon and Mars. Using
MVP, a fruit fly space habitat, we provide insights into spaceflight
effects on the brain at the molecular, morphological, and behav-
ioral levels. While AG by rotation of the spacecraft is being
considered as a potential countermeasure to g, there is a gap
in our understanding of AG prescriptions required to ameliorate
the health concerns during spaceflight (Clément, 2017; Clément
and Traon, 2004; Mao et al., 2018a; Young, 1999). To address
this knowledge gap, we utilized the MVP hardware featuring an
inflight centrifuge that simulates Earth’s gravity on the ISS
(SF1g). SF1g served two objectives: (1) assessment of the use
of AG as a countermeasure and (2) distinguishing the effects of
ng from other spaceflight stressors, such as radiation.

A key feature of the MVP hardware, the inflight video-
recording capability, aided in assessing the health of the flies
during the mission and provided real-time data of behavioral al-
terations caused by the change in the gravitational environment.
Due to the large number of videos taken on the mission, manual
analysis by visual assessment was not feasible nor was the use
of specialized equipment traditionally used to assess fly behavior
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in ground laboratories (Chan et al., 2012; Inan et al., 2009, 2011;
Kohlhoff et al., 2011; Slawson et al., 2009). Also, the constraints
in video quality, such as uneven light distribution and the inability
to focus on flies in the foreground and the background, pre-
vented the use of sophisticated tracking and machine-learning
algorithms for behavioral analysis. Therefore, a simple yet effec-
tive automated method was developed to quantitatively capture
overall behavioral differences across spaceflight conditions. The
overall level of activity of a population is a trait influenced by the
environment and can be used to assess other physiological
changes. Miller et al. suggested that fly hyperactivity in ug is a
result of their innate negative geotactic response (Miller et al.,
2002). Interestingly, our findings follow a similar trend, apart
from the population flux point (day 20), we consistently observed
that flies in SFug are more active than those in SFig (Figures 1D
and 1E). These data suggest that AG may suppress the hyperac-
tive behavior in flies during spaceflight. Similar increases in fly
activity (Benguria et al., 1996) and mouse circling behavior
(Roncaet al., 2019) in spaceflight conditions have been reported.
Future improvements in the flight hardware might aid in quanti-
fying individual fly activity, thus providing further insights into
behavioral changes caused by gravity changes and the ability
to test the effectiveness of countermeasures.

A substantial fraction of the literature on the CNS effects of
spaceflight focuses on either anatomical changes or molecular
changes using omics platforms. In this study, we took a multi-
modal approach combining the morphological analysis with
the omics-based molecular phenotyping for a comprehensive
understanding of the underlying mechanisms associated with
spaceflight-induced brain changes. At the transcriptomics level,
we observed a higher number of differentially regulated genes in
SFug compared with Earth, specifically in females. Meanwhile,
the SF1g females show fewer changes in RNA compared with
Earth (Figure 3). Interestingly, at the proteomic level, the number
of DEPs is relatively similar and shows considerable overlap
across spaceflight conditions (SF1g versus Earth and SFug
versus Earth). In many studies, a discordance is observed be-
tween the two omics platforms; nevertheless, each dataset
offers unique insights into spaceflight-associated changes
(Casas-Vilaet al., 2017; De Sousa Abreu et al., 2009). While tran-
scriptomic analyses provide broad-scale insights into molecular
dynamics that occur on the level of mMRNA regulation, most phys-
iological processes are driven by protein function. Based on pro-
teomics, one important theme that was captured across both
spaceflight conditions was a change in metabolic pathways,
including oxidative phosphorylation (Figures 3, 4, and 5). These
are consistent with previously published data on space-flown
human kidney cells (Hammond et al., 2000) and mouse brain
subjected to spaceflight (Mao et al., 2018b).

The brain is a metabolically dynamic and high-energy-
demanding organ that is dependent on mitochondria for deriving
energy via various metabolic processes that converge at glycol-
ysis and oxidative phosphorylation (Hall et al., 2012; Magistretti
and Allaman, 2015). Normal functioning of the brain requires a
tight temporal and spatial regulation of metabolite supply for en-
ergy production (Roy and Sherrington, 1890; Watts et al., 2018).
We observe such metabolic regulation in spaceflight flies with
increased glucose, fatty acid, and amino acid metabolism
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(Figures 4E, 4H, and 41). Additionally, spaceflight flies exhibit alter-
ation in proteins of the ETC and ATP metabolism (Figures 4F and
4G), similar to the observations in mice, astronauts, and the NASA
Twins Study (da Silveira et al., 2020). Such dysregulation of ETC
and abnormal mitochondrial dynamics (Figure 4D) can lead to
mitochondrial and oxidative stress via ROS production (Bhatti
et al., 2017). Oxidative stress during spaceflight is further evi-
denced by an increase in 8-oxo-dG, a cellular oxidative stress
marker, in the SFug fly brain at the R+0 time point (Figures 2E
and 2l) and is consistent with the increase of 8-oxo-dG in urine
and plasma samples in astronauts (Rai et al., 2011; da Silveira
et al., 2020). On the contrary, SF1g brains at the R+0 time point
showed no significant change in the 8-oxo-dG marker, thus sug-
gesting that AG can suppress oxidative damage in the brain
immediately after return from spaceflight (Figures 2E and 2I).

We hypothesize that the observed alterations in the metabolic
pathways are an effort to restore cellular homeostasis via meta-
bolic reprogramming. While homeostasis is restored in R+0
SF1g, possibly due to AG, as evidenced by their similar brain
morphology to Earth flies (Figure 2), ug in SFug acts as an addi-
tional stressor, potentially resulting in elevated oxidative stress.
This stress can further trigger a cascade of events leading to
neuronal damage as noted in the behavioral deficits (Figure 2A),
loss of DA neurons (Figures 2E and 2F), decreased neuronal cor-
tex and neuropil areas (Figures 2B-2D and S3B), and increased
apoptosis (Figures 2E and 2H) in SFug flies. Additionally, we
observe perturbations in synaptic transmission proteins during
spaceflight (Figures 5C and 5D), which, in combination with bio-
energetic changes (Figure 4), can result in dysregulation of cal-
cium homeostasis and synaptic degeneration (Mattson and
Liu, 2002). Synaptic changes have also been documented in
multiple spaceflight and ground-based rodent studies (Bondar,
2005; DeFelipe et al., 2002; Gaofei et al., 2009; Howe et al.,
2019; Machida et al., 2010; Parihar et al., 2015, 2016; Ranjan
et al.,, 2014; Ross and Varelas, 2005; Sokolova et al., 2015;
Wang et al., 2015). Neuronal damage and loss induced by
elevated oxidative stress can potentially alter the glial response,
initiating phagocytosis to clear neuronal debris (Block et al.,
2007). While our observations of glial numbers immediately after
return (R+0) show an increasing trend in SFug females and SF1g
(both females and males) (Figure 2G), further analysis is war-
ranted to elucidate the underlying mechanism of change in glial
function. Collectively, our observations suggest that brain
morphological changes due to spaceflight-induced oxidative
stress are more pronounced in pg conditions, and AG can pro-
vide partial protection to these phenotypes.

Based on our omics data, R+0 morphology, and the radiation
levels on the ISS, gravity seems to have a significant impact on
the immediate phenotypes of spaceflight with larger observable
changes in SFug compared with SF1g. The environment experi-
enced by the flies in SFug compared with SF1g allows the com-
parison of gravity separately from the combined effect of the
other spaceflight stressors like radiation, elevated CO,, and
sound pressure, which would equally impact both SF1g and
SFug. Although the morphological manifestations are not
observed in SF1g flies at the R+0 time point, with age (R+25),
the phenotypes progressively present themselves in the form
of increased apoptosis, neuronal loss, glial loss, and aggregate
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formation (Figures 6A-6F). Glial loss may be attributed to the
relocation of glia to the neuronal debris, thus resulting in aggre-
gates (formation of rosettes), a phenotype specific to the space-
flight environment. These phenotypes in SF1g at R+25 may be a
delayed response to radiation combined with exposure to other
space stressors such as elevated CO,. Radiation studies in
ground-based rodent models indicate that exposure to deep-
space radiation (galactic cosmic radiation [GCR]) alone can
affect behavior (Dutta et al., 2018; Euston et al., 2012; Parihar
et al., 2015, 2018; Raber et al., 2018) and neuronal phenotypes
(Davis et al., 2015; Howe et al., 2019; Impey et al., 2016; Krukow-
ski et al., 2018; Parihar et al., 2015, 2016; Raber et al., 2016,
2018, 2019; Rabin et al., 2014; Whoolery et al., 2017). In an en-
closed and isolated environment of the ISS, astronauts experi-
ence elevated CO, levels that are considerably higher than
ambient levels on Earth (Mahadevan et al., 2021). In our study,
the Earth control flies were exposed to an environment
mimicking the ISS and experienced high CO, levels similar to
SF1g and SFug flies, in contrast to regular lab conditions. Mild
chronic hypercapnia due to constant exposure of elevated CO,
levels may contribute to the observed deficits of decreased
TH-positive cells and repo-positive rosettes (<10) in the Earth
control flies at R+25, along with the increased cell death (CC3-
positive cells) and DNA oxidation (8-oxo-dG-positive cells) as
noted at R+0 in Earth controls. In fact, in our ground-based
study, we observed minimal cell death and DNA oxidation under
normal terrestrial CO, levels compared with Earth control brains
from the MVP mission exposed to elevated CO, levels (data not
shown). Thus, the observations reported in the Earth controls are
part of the unique spaceflight paradigm and may not be compa-
rable to contrals in terrestrial studies. While ground studies are
important in separating the effects of individual space stressors,
spaceflight studies are particularly relevant as we prepare for
long-duration human missions to the Moon and Mars, where
there will be a combination of exposures to reduced gravity
and doses of ionizing radiation that will be higher than in LEO
(Mao et al., 2017; Straume et al., 2017).

This study integrates transcriptomic, proteomic, morpholog-
ical, and behavioral analyses to investigate the effects of space-
flight on Drosophila CNS both during and after return from space-
flight. Further, our study utilizes inflight centrifuge mimicking
Earth 1g as a control that allowed us to separate nug from the ef-
fects of other spaceflight environmental factors such as ionizing
radiation. Additionally, the postflight acclimation to Earth’s con-
ditions is relevant to understanding the sustained effects of
spaceflight on the CNS. Our integrated approach suggests that
oxidative stress during spaceflight leads to differential regulation
of metabolic pathways, oxidative phosphorylation, and synaptic
transmission resulting in neuronal deficits, glial changes,
increased apoptosis, and behavioral impairments in Drosophila.
Furthermore, this study indicates that pg is an important, but
not an exclusive, environmental factor contributing to the neuro-
behavioral outcomes during long-term deep-space missions. AG
may provide a measure for short-term protection, but long-term
solutions still need to be explored, especially for long-duration
missions in deep space. Earth’s magnetosphere partially pro-
tects against ionizing radiation from GCRs and solar particle
events (SPEs) in LEO, but beyond LEO, deep-space irradiation
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will pose significant risks to crew member health. Thus, along
with AG, future countermeasure studies should target these
pathways in model organisms that are amenable to large-scale
screening in space.

Limitations of the study

The opportunity to conduct spaceflight experiments is not only
rare and expensive, but the logistical constraints of such
studies also make them highly challenging to perform (Inokuchi
et al., 2007; Rutter et al., 2020). For instance, the experiment
launch and retrieval can be significantly altered due to weather
or technical issues with the spacecraft, thus necessitating a
flexible experimental design to achieve the intended science
goals. In fact, our sample return was delayed from 31 days
to 34 days due to weather-related issues. Another constraint
of spaceflight studies is that retrieving exact age-matched flies
is often not feasible. Some of the previous spaceflight studies
have been conducted on mixed-age populations of flies from
different generations (depending on the mission’s timeline).
But with the MVP hardware, the astronauts could accommo-
date multiple timed inflight operations, including a 5.5-day
egg-lay period (Figure S1C), thus ensuring that the retrieved
flies were from the same generation and within a relatively
close age range (11-17 days). Our strategy of testing randomly
selected flies from this collection ensured that the average
ages were similar and allowed for an unbiased comparison
across groups of flies. Further, spaceflight experiments are
severely limited by mass and volume. Therefore, the number
of samples retrieved is limited by the capacity of the flight
hardware. In this experiment, a large population of live flies
were retrieved from the MVP hardware, allowing us to conduct
the presented experiments. Additional flies would have al-
lowed for longitudinal multi-omics profiling at the R+25 time
point but were unavailable for this experiment. The current
study, MVP-FLY-01 mission, was an important one-time vali-
dation flight for the MVP hardware to demonstrate its ability
to support Drosophila research on the ISS. After its successful
validation, as demonstrated by this experiment, this hardware
will form the framework for multiple Drosophila spaceflight in-
vestigations in the future.
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U. S. National Institutes of Health,
Bethesda, Maryland, USA

Wickham, 2016
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