2,942 research outputs found

    Pest categorisation of Satsuma dwarf virus

    Get PDF
    The EFSA Panelon Plant Health performed a pest categorisation of Satsuma dwarf virus (SDV) for the EU territory. SDV is a well-known pathogen and the type species of the genus Sadwavirus in the family Secoviridae. SDV is now considered to include several other formerly distinct viruses which are therefore also covered in the present opinion. Citrus species and their relatives represent the main hosts of SDV and efficient diagnostic techniques are available. SDV is listed on some of its known hosts in Annex IIAI of Directive 2000/29/EC. It is transmitted by vegetative propagation of infected hosts and presumably through the soil, but the precise mechanism or vector(s) are still unknown. SDV is present in Asia and is not known to occur in the EU. Therefore, it does not meet this criterion to qualify as a Union regulated non-quarantine pest (RNPQ). Plants for planting represent the main pathway for the entry, but this pathway is closed by existing legislation for the main hosts (Citrus, Fortunella and Poncirus). SDV is, however, able to enter the EU on plants for plants of its unregulated rutaceous or non-rutaceous hosts. Should it be introduced, SDV has the potential to establish and subsequently spread with plants for planting and, possibly, through its poorly characterised natural spread mechanism(s). SDV is able to cause severe symptoms, quality and yield losses on a range of citrus crops. Overall, SDV meets all the criteria evaluated by EFSA to qualify as a Union quarantine pest. The main knowledge gaps and uncertainties concern (1) the potential significance of the unregulated rutaceous and non-rutaceous hosts for virus dissemination and epidemiology, (2) the origin and trade volume of the plants for planting of these host imported in the EU and (3) theefficiency of natural spread of SDV under EU conditions

    OCEANOGRAPHIC DATA OF THE 25TH JAPANESE ANTARCTIC RESEARCH EXPEDITION FROM NOVEMBER 1983 TO APRIL 1984

    Get PDF
    This report presents the data of the oceanographic observations on board the icebreaker Shirase and the tidal observation at Syowa Station, which were carried out in the mission of the 25th Japanese Antarctic Research Expedition in 1983-1984

    OCEANOGRAPHIC DATA OF THE 26TH JAPANESE ANTARTIC RESEARCH EXPEDITION FROM NOVEMBER 1984 T0 APRIL 1985

    Get PDF
    This report presents the data of the oceanographic observations on board the icebreaker Shirase and the tidal observation at Syowa Station, which were carried out in the summer mission of the 26th Japanese Antarctic Research Expedition in 1984-1985

    Evolutionary transition from degenerate to nonredundant cytokine signaling networks supporting intrathymic T cell development

    No full text
    In mammals, T cell development critically depends on the IL-7 cytokine signaling pathway. Here we describe the identification of the zebrafish ortholog of mammalian IL-7 based on chromosomal localization, deduced protein sequence, and expression patterns. To examine the biological role of il7 in teleosts, we generated an il7 allele lacking most of its coding exons using CRISPR/Cas9-based mutagenesis. il7-deficient animals are viable and exhibit no obvious signs of immune disorder. With respect to intrathymic T cell development, il7 deficiency is associated with only a mild reduction of thymocyte numbers, contrasting with a more pronounced impairment of T cell development in il7r-deficient fish. Genetic interaction studies between il7 and il7r mutants, and il7 and crlf2(tslpr) mutants suggest the contribution of additional, as-yet unidentified cytokines to intrathymic T cell development. Such activities were also ascertained for other cytokines, such as il2 and il15, collectively indicating that in contrast to the situation in mammals, T cell development in the thymus of teleosts is driven by a degenerate multicomponent network of γc cytokines; this explains why deficiencies of single components have little detrimental effect. In contrast, the dependence on a single cytokine in the mammalian thymus has catastrophic consequences in cases of congenital deficiencies in genes affecting the IL-7 signaling pathway. We speculate that the transition from a degenerate to a nonredundant cytokine network supporting intrathymic T cell development emerged as a consequence of repurposing evolutionarily ancient constitutive cytokine pathways for regulatory functions in the mammalian peripheral immune system

    Histomorphometric analysis of minimodeling in the vertebrae in postmenopausal patients treated with anti-osteoporotic agents

    Get PDF
    AbstractMinimodeling is a type of focal bone formation that is characterized by the lack of precedent bone erosion by osteoclasts. Although this form of bone formation has been described for more than a decade, how anti-osteoporotic agents that are currently used in clinical practice affect the kinetics of minimodeling is not fully understood. We performed a bone morphometric analysis using human vertebral specimens collected from postmenopausal patients who underwent spinal surgery. Patients were divided into three groups according to osteoporosis medication; non-treated, Eldecalcitol (ELD, a vitamin D derivative that has recently been approved to treat patients with osteoporosis in Japan)-treated, and bisphosphonate-treated groups. Five to six patients were enrolled in each group. There was a trend toward enhanced minimodeling in ELD-treated patients and suppressed of it in bisphosphonate-treated patients compared with untreated patients. The differences of minimodeling activity between ELD-treated and bisphosphonate-treated patients were statistically significant. The present study suggests that ELD and bisphosphonates have opposite effects on minimodeling from one another, and show that minimodeling also takes place in vertebrae as has been described for the ilium and femoral head in humans
    corecore