954 research outputs found

    Recent and future trends in synthetic greenhouse gas radiative forcing

    Get PDF
    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m[superscript −2] in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to “no HFC policy” projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m[superscript −2] by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)United States. National Aeronautics and Space Administration (Upper Atmospheric Research Program Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administratio

    Misalignment between cold gas and stellar components in early-type galaxies

    Get PDF
    Recent work suggests blue ellipticals form in mergers and migrate quickly from the blue cloud of star-forming galaxies to the red sequence of passively evolving galaxies, perhaps as a result of black hole feedback. Such rapid reddening of stellar populations implies that large gas reservoirs in the pre-merger star-forming pair must be depleted on short time-scales. Here we present pilot observations of atomic hydrogen gas in four blue early-type galaxies that reveal increasing spatial offsets between the gas reservoirs and the stellar components of the galaxies, with advancing post-starburst age. Emission line spectra show associated nuclear activity in two of the merged galaxies, and in one case radio lobes aligned with the displaced gas reservoir. These early results suggest that a kinetic process (possibly feedback from black hole activity) is driving the quick truncation of star formation in these systems, rather than a simple exhaustion of gas suppl

    Model-based estimates of transmission of respiratory syncytial virus within households.

    Get PDF
    INTRODUCTION: Respiratory syncytial virus (RSV) causes a significant respiratory disease burden in the under 5 population. The transmission pathway to young children is not fully quantified in low-income settings, and this information is required to design interventions. METHODS: We used an individual level transmission model to infer transmission parameters using data collected from 493 individuals distributed across 47 households over a period of 6 months spanning the 2009/2010 RSV season. A total of 208 episodes of RSV were observed from 179 individuals. We model competing transmission risk from within household exposure and community exposure while making a distinction between RSV groups A and B. RESULTS: We find that 32-53% of all RSV transmissions are between members of the same household; the rate of pair-wise transmission is 58% (95% CrI: 30-74%) lower in larger households (≥8 occupants) than smaller households; symptomatic individuals are 2-7 times more infectious than asymptomatic individuals i.e. 2.48 (95% CrI: 1.22-5.57) among symptomatic individuals with low viral load and 6.7(95% CrI: 2.56-16) among symptomatic individuals with high viral load; previous infection reduces susceptibility to re-infection within the same epidemic by 47% (95% CrI: 17%-68%) for homologous RSV group and 39% (95%CrI: -8%-69%) for heterologous group; RSV B is more frequently introduced into the household, and RSV A is more rapidly transmitted once in the household. DISCUSSION: Our analysis presents the first transmission modelling of cohort data for RSV and we find that it is important to consider the household social structuring and household size when modelling transmission. The increased infectiousness of symptomatic individuals implies that a vaccine against RSV related disease would also have an impact on infection transmission. Together, the weak cross immunity between RSV groups and the possibility of different transmission niches could form part of the explanation for the group co-existence

    Integrating epidemiological and genetic data with different sampling intensities into a dynamic model of respiratory syncytial virus transmission.

    Get PDF
    Respiratory syncytial virus (RSV) is responsible for a significant burden of severe acute lower respiratory tract illness in children under 5 years old; particularly infants. Prior to rolling out any vaccination program, identification of the source of infant infections could further guide vaccination strategies. We extended a dynamic model calibrated at the individual host level initially fit to social-temporal data on shedding patterns to include whole genome sequencing data available at a lower sampling intensity. The study population was 493 individuals (55 aged < 1 year) distributed across 47 households, observed through one RSV season in coastal Kenya. We found that 58/97 (60%) of RSV-A and 65/125 (52%) of RSV-B cases arose from infection probably occurring within the household. Nineteen (45%) infant infections appeared to be the result of infection by other household members, of which 13 (68%) were a result of transmission from a household co-occupant aged between 2 and 13 years. The applicability of genomic data in studies of transmission dynamics is highly context specific; influenced by the question, data collection protocols and pathogen under investigation. The results further highlight the importance of pre-school and school-aged children in RSV transmission, particularly the role they play in directly infecting the household infant. These age groups are a potential RSV vaccination target group

    Using contact data to model the impact of contact tracing and physical distancing to control the SARS-CoV-2 outbreak in Kenya [version 1; peer review: 1 approved, 1 approved with reservations]

    Get PDF
    Background: Across the African continent, other than South Africa, COVID-19 cases have remained relatively low. Nevertheless, in Kenya, despite early implementation of containment measures and restrictions, cases have consistently been increasing. Contact tracing forms one of the key strategies in Kenya, but may become infeasible as the caseload grows. Here we explore different contact tracing strategies by distinguishing between household and non-household contacts and how these may be combined with other non-pharmaceutical interventions. Methods: We extend a previously developed branching process model for contact tracing to include realistic contact data from Kenya. Using the contact data, we generate a synthetic population of individuals and their contacts categorised by age and household membership. We simulate the initial spread of SARS-CoV-2 through this population and look at the effectiveness of a number of non-pharmaceutical interventions with a particular focus on different contact tracing strategies and the potential effort involved in these. Results: General physical distancing and avoiding large group gatherings combined with contact tracing, where all contacts are isolated immediately, can be effective in slowing down the outbreak, but were, under our base assumptions, not enough to control it without implementing extreme stay at home policies. Under optimistic assumptions with a highly overdispersed R0 and a short delay from symptom onset to isolation, control was possible with less stringent physical distancing and by isolating household contacts only. Conclusions: Without strong physical distancing measures, controlling the spread of SARS-CoV-2 is difficult. With limited resources, physical distancing combined with the isolation of households of detected cases can form a moderately effective strategy, and control is possible under optimistic assumptions. More data are needed to understand transmission in Kenya, in particular by studying the settings that lead to larger transmission events, which may allow for more targeted responses, and collection of representative age-related contact data

    Extended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede’s magnetosphere

    Full text link
    We have recently developed a new modeling capability to embed the implicit particle‐in‐cell (PIC) model iPIC3D into the Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD‐EPIC) algorithm is a two‐way coupled kinetic‐fluid model. As one of the very first applications of the MHD‐EPIC algorithm, we simulate the interaction between Jupiter’s magnetospheric plasma and Ganymede’s magnetosphere. We compare the MHD‐EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede’s magnetosphere. We find that the Hall MHD and MHD‐EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD‐EPIC model. The MHD‐EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3‐D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD‐EPIC simulation was only about 4 times more than that of the Hall MHD simulation.Key PointsFirst particle‐in‐cell simulation of Ganymede’s magnetosphereThe MHD‐EPIC algorithm makes global kinetic simulations affordableMHD‐EPIC simulation suggests that Galileo observed a flux transfer event during the G8 flybyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135161/1/jgra52397.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135161/2/jgra52397_am.pd

    A giant ectopic hidradenoma papilliferum in a Niger delta region of Nigeria

    Get PDF
    Hidradenoma papilliferum is a known example of adnexal skin tumours with apocrine differentiation. It is a rare benign tumour which tends to arise from areas with rich concentration of aporine glands such as anogenital region, vulval, perineal, axillae, and periumbilical areas. In this report, the tumour was found in the upper outer quadrant of left breast, being one of the ectopic sites for this tumour. Contrary to most reports where male preponderance was popular for ectopic hidradenoma papilliferum, the patient in this report is a 71-year-old female. Considering the location of this tumour in this report, the likely histopathological differential diagnoses such as tubular apocrine adenoma, clear cell (apocrine) adenoma, lipoma, intraductal papilloma and papillary carcinoma of the breast should be considered for exclusion. This is the first reported case of a giant ectopic hidradenoma papilliferum of the breast in a Niger Delta region of Nigeria which also highlights the role of fine needle aspiration and cytology in the diagnosis of breast lesions

    Physical Activity Before and During Pregnancy and Risk of Gestational Diabetes Mellitus: A meta-analysis

    Get PDF
    OBJECTIVE: Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy and is associated with a substantially elevated risk of adverse health outcomes for both mothers and offspring. Physical activity may contribute to the prevention of GDM and thus is crucial for dissecting the vicious circle involving GDM, childhood obesity, and adulthood obesity, and diabetes. Therefore, we aimed to systematically review and synthesize the current evidence on the relation between physical activity and the development of GDM. RESEARCH DESIGN AND METHODS: Medline, EMBASE, and Cochrane Reviews were searched from inception to 31 March 2010. Studies assessing the relationship between physical activity and subsequent development of GDM were included. Characteristics including study design, country, GDM diagnostic criteria, ascertainment of physical activity, timing of exposure (prepregnancy or early pregnancy), adjusted relative risks, CIs, and statistical methods were extracted independently by two reviewers. RESULTS: Our search identified seven prepregnancy and five early pregnancy studies, including five prospective cohorts, two retrospective case-control studies, and two cross-sectional study designs. Prepregnancy physical activity was assessed in 34,929 total participants, which included 2,813 cases of GDM, giving a pooled odds ratio (OR) of 0.45 (95% CI 0.28–0.75) when the highest versus lowest categories were compared. Exercise in early pregnancy was assessed in 4,401 total participants, which included 361 cases of GDM, and was also significantly protective (0.76 [95% CI 0.70–0.83]). CONCLUSIONS: Higher levels of physical activity before pregnancy or in early pregnancy are associated with a significantly lower risk of developing GDM

    Limits on precursor and afterglow radio emission from a fast radio burst in a star-forming galaxy

    Get PDF
    We present a new fast radio burst at 920 MHz discovered during commensal observations conducted with the Australian Square Kilometre Array Pathfinder (ASKAP) as part of the Commensal Real-time ASKAP Fast Transients (CRAFT) survey. FRB 191001 was detected at a dispersion measure (DM) of 506.92(4) pc cm3^{-3} and its measured fluence of 143(15) Jy ms is the highest of the bursts localized to host galaxies by ASKAP to date. The sub-arcsecond localisation of the FRB provided by ASKAP reveals that the burst originated in the outskirts of a highly star-forming spiral in a galaxy pair at redshift z=0.2340(1)z=0.2340(1). Radio observations show no evidence for a compact persistent radio source associated with the FRB 191001 above a flux density of 15μ15\muJy. However, we detect diffuse synchrotron radio emission from the disk of the host galaxy that we ascribe to ongoing star formation. FRB 191001 was also detected as an image-plane transient in a single 10-s snapshot with a flux density of 19.3 mJy in the low-time-resolution visibilities obtained simultaneously with CRAFT data. The commensal observation facilitated a search for repeating and slowly varying radio emissions 8 hrs before and 1 hr after the burst. We found no variable radio emission on timescales ranging from 1 ms to 1.4 hr. We report our upper limits and briefly review FRB progenitor theories in the literature which predict radio afterglows. Our data are still only weakly constraining of any afterglows at the redshift of the FRB. Future commensal observations of more nearby and bright FRBs will potentially provide stronger constraints.Comment: 12 pages, 6 figures, Accepted for publication in ApJ Letter
    corecore