342 research outputs found

    Predicting the Acute Liver Toxicity of Aflatoxin B1 in Rats and Humans by an In Vitroā€“In Silico Testing Strategy

    Get PDF
    Scope: High-level exposure to aflatoxin B1 (AFB1) is known to cause acute liver damage and fatality in animals and humans. The intakes actually causing this acute toxicity have so far been estimated based on AFB1 levels in contaminated foods or biomarkers in serum. The aim of the present study is to predict the doses causing acute liver toxicity of AFB1 in rats and humans by an in vitroā€“in silico testing strategy. Methods and results: Physiologically based kinetic (PBK) models for AFB1 in rats and humans are developed. The models are used to translate in vitro concentrationā€“response curves for cytotoxicity in primary rat and human hepatocytes to in vivo doseā€“response curves using reverse dosimetry. From these data, the dose levels at which toxicity would be expected are obtained and compared to toxic dose levels from available rat and human case studies on AFB1 toxicity. The results show that the in vitroā€“in silico testing strategy can predict dose levels causing acute toxicity of AFB1 in rats and human. Conclusions: Quantitative in vitro in vivo extrapolation (QIVIVE) using PBK modeling-based reverse dosimetry can predict AFB1 doses that cause acute liver toxicity in rats and human.</p

    Physiologically Based Kinetic Modeling-Facilitated Reverse Dosimetry to Predict in Vivo Red Blood Cell Acetylcholinesterase Inhibition following Exposure to Chlorpyrifos in the Caucasian and Chinese Population

    Get PDF
    Organophosphates have a long history of use as insecticides over the world. The aim of the present study was to investigate the interethnic differences in kinetics, biomarker formation, and in vivo red blood cell acetylcholinesterase inhibition of chlorpyrifos (CPF) in the Chinese and the Caucasian population. To this purpose, physiologically based kinetic models for CPF in both the Chinese and Caucasian population were developed, and used to study time-and dose-dependent interethnic variation in urinary biomarkers and to convert concentration-response curves for red blood cell acetylcholinesterase inhibition to in vivo dose-response curves in these 2 populations by reverse dosimetry. The results obtained revealed a marked interethnic difference in toxicokinetics of CPF, with lower urinary biomarker levels at similar dose levels and slower CPF bioactivation and faster chlorpyrifos-oxon detoxification in the Chinese compared with the Caucasian population, resulting in 5-to 6-fold higher CPF sensitivity of the Caucasian than the Chinese population. These differences might be related to variation in the frequency of single-nucleotide polymorphisms for the major biotransformation enzymes involved. To conclude, the interethnic variation in kinetics of CPF may affect both its biomarker-based exposure assessment and its toxicity and risk assessment and physiologically based kinetic modeling facilitates the characterization and quantification of these interethnic variations.</p

    Cellular levels and molecular dynamics simulations of estragole DNA adducts point at inefficient repair resulting from limited distortion of the double-stranded DNA helix

    Get PDF
    Estragole, naturally occurring in a variety of herbs and spices, can form DNA adducts after bioactivation. Estragole DNA adduct formation and repair was studied in in vitro liver cell models, and a molecular dynamics simulation was used to investigate the conformation dependent (in)efficiency of N2-(trans-isoestragol-3ā€²-yl)-2ā€²-deoxyguanosine (E-3ā€²-N2-dG) DNA adduct repair. HepG2, HepaRG cells, primary rat hepatocytes and CHO cells (including CHO wild-type and three NER-deficient mutants) were exposed to 50 Ī¼M estragole or 1ā€²-hydroxyestragole and DNA adduct formation was quantified by LCā€“MS immediately following exposure and after a period of repair. Results obtained from CHO cell lines indicated that NER plays a role in repair of E-3ā€²-N2-dG adducts, however, with limited efficiency since in the CHO wt cells 80% DNA adducts remained upon 24 h repair. Inefficiency of DNA repair was also found in HepaRG cells and primary rat hepatocytes. Changes in DNA structure resulting from E-3ā€²-N2-dG adduct formation were investigated by molecular dynamics simulations. Results from molecular dynamics simulations revealed that conformational changes in double-stranded DNA by E-3ā€²-N2-dG adduct formation are small, providing a possible explanation for the restrained repair, which may require larger distortions in the DNA structure. NER-mediated enzymatic repair of E-3ā€²-N2-dG DNA adducts upon exposure to estragole will be limited, providing opportunities for accumulation of damage upon repeated daily exposure. The inability of this enzymatic repair is likely due to a limited distortion of the DNA double-stranded helix resulting in inefficient activation of nucleotide excision repair.</p

    Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays

    Get PDF
    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD10 values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD10 were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicit

    A transcriptomic approach for evaluating the relative potency and mechanism of action of azoles in the rat Whole Embryo Culture.

    Get PDF
    We evaluated the effect of six azoles on embryonic development in the rat whole embryo culture (WEC). Using the total morphological scoring system (TMS), we calculated the ID10concentration (effective dose for 10% decrease in TMS). For evaluating gene specific responses, we combined previously and newly collected transcriptomics data of rat WEC exposed to a total of twelve azoles at their ID10for 4h. Results revealed shared expressions responses in genes involved in the retinoic acid (RA) and sterol biosynthesis pathways, which are respectively representatives of developmental toxicity and targeted fungicidal action of the azoles. Azoles with more pronounced effects on the regulation of RA-associated genes were generally characterized as more potent embryotoxicants. Overall, compounds with strong sterol biosynthesis related responses and low RA related responses were considered as more favourable candidates, as they specifically regulated genes related to a desired target response. Among the identified sterol associated genes, we detected that methylsterol monooxygenase 1 (Msmo1) was more sensitively induced compared to Cyp51, a classical biomarker of this pathway. Therefore, we suggest that Msmo1 could be a better biomarker for screening the fungicidal value of azoles. In summary, we conclude that the embryonic regulation of RA and sterol metabolic pathways could be indicators for ranking azoles as embryotoxicants and determining their drug efficacy

    In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling

    Get PDF
    Estragole is a naturally occurring food-borne genotoxic compound found in a variety of food sources, including spices and herbs. This results in human exposure to estragole via the regular diet. The objective of this study was to quantify the dose-dependent estragole-DNA adduct formation in rat liver and the urinary excretion of 1'-hydroxyestragole glucuronide in order to validate our recently developed physiologically based biodynamic (PBBD) model. Groups of male outbred Sprague Dawley rats (n = 10, per group) were administered estragole once by oral gavage at dose levels of 0 (vehicle control), 5, 30, 75, 150, and 300mg estragole/kg bw and sacrificed after 48h. Liver, kidney and lungs were analysed for DNA adducts by LC-MS/MS. Results obtained revealed a dose-dependent increase in DNA adduct formation in the liver. In lungs and kidneys DNA adducts were detected at lower levels than in the liver confirming the occurrence of DNA adducts preferably in the target organ, the liver. The results obtained showed that the PBBD model predictions for both urinary excretion of 1'-hydroxyestragole glucuronide and the guanosine adduct formation in the liver were comparable within less than an order of magnitude to the values actually observed in vivo. The PBBD model was refined using liver zonation to investigate whether its predictive potential could be further improved. The results obtained provide the first data set available on estragole-DNA adduct formation in rats and confirm their occurrence in metabolically active tissues, i.e. liver, lung and kidney, while the significantly higher levels found in liver are in accordance with the liver as the target organ for carcinogenicity. This opens the way towards future modelling of dose-dependent estragole liver DNA adduct formation in huma

    Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model

    Get PDF
    AbstractTo obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcinoma grown on a transwell insert forming a cell layer that separates an apical from a basolateral compartment. PS-NPs were characterized with respect to size, surface charge, morphology and protein corona. Translocation of PS-NPs was not related to PS-NP charge. Two PS-NPs were translocated across the BeWo transwell model to a lower extent than amoxicillin, a model compound known to be translocated over the placental barrier to only a limited extent, whereas one PS-NP showed a slightly higher translocation. Studies on the effect of transporter inhibitors on the translocation of the PS-NPs indicated that their translocation was not mediated by known transporters and mainly dependent on passive diffusion. It is concluded that the BeWo b30 model can be used as an efficient method to get an initial qualitative impression about the capacity of NPs to translocate across the placental barrier and set priorities in further in vivo studies on translocation of NPs to the fetus

    Evaluation of Human Interindividual Variation in Bioactivation of Estragole Using Physiologically Based Biokinetic Modeling

    Get PDF
    The present study investigates interindividual variation in liver levels of the proximate carcinogenic metabolite of estragole, 1ā€²-hydroxyestragole, due to variation in two key metabolic reactions involved in the formation and detoxification of this metabolite, namely 1ā€²-hydroxylation of estragole and oxidation of 1ā€²-hydroxyestragole. Formation of 1ā€²-hydroxyestragole is predominantly catalyzed by P450 1A2, 2A6, and 2E1, and results of the present study support that oxidation of 1ā€²-hydroxyestragole is catalyzed by 17Ī²-hydroxysteroid dehydrogenase type 2 (17Ī²-HSD2). In a first approach, the study defines physiologically based biokinetic (PBBK) models for 14 individual human subjects, revealing a 1.8-fold interindividual variation in the area under the liver concentration-time curve (AUC) for 1ā€²-hydroxyestragole within this group of human subjects. Variation in oxidation of 1ā€²-hydroxyestragole by 17Ī²-HSD2 was shown to result in larger effects than those caused by variation in P450 enzyme activity. In a second approach, a Monte Carlo simulation was performed to evaluate the extent of variation in liver levels of 1ā€²-hydroxyestragole that could occur in the population as a whole. This analysis could be used to derive a chemical-specific adjustment factor (CSAF), which is defined as the 99th percentile divided by the 50th percentile of the predicted distribution of the AUC of 1ā€²-hydroxyestragole in the liver. The CSAF was estimated to range between 1.6 and 4.0, depending on the level of variation that was taken into account for oxidation of 1ā€²-hydroxyestragole. Comparison of the CSAF to the default uncertainty factor of 3.16 for human variability in biokinetics reveals that the default uncertainty factor adequately protects 99% of the populatio

    Influence of Cellular ERĪ±/ERĪ² Ratio on the ERĪ±-Agonist Induced Proliferation of Human T47D Breast Cancer Cells

    Get PDF
    Breast cancer cells show overexpression of estrogen receptor (ER) Ī± relative to ERĪ² compared to normal breast tissues. This observation has lead to the hypothesis that ERĪ² may modulate the proliferative effect of ERĪ±. This study investigated how variable cellular expression ratios of the ERĪ± and ERĪ² modulate the effects on cell proliferation induced by ERĪ± or ERĪ² agonists, respectively. Using human osteosarcoma (U2OS) ERĪ± or ERĪ² reporter cells, propyl-pyrazole-triol (PPT) was shown to be a selective ERĪ± and diarylpropionitrile (DPN) a preferential ERĪ² modulator. The effects of these selective estrogen receptor modulators (SERMs) and of the model compound E2 on the proliferation of T47D human breast cancer cells with tetracycline-dependent expression of ERĪ² (T47D-ERĪ²) were characterized. E2-induced cell proliferation of cells in which ERĪ² expression was inhibited was similar to that of the T47D wild-type cells, whereas this E2-induced cell proliferation was no longer observed when ERĪ² expression in the T47D-ERĪ² cells was increased. In the T47D-ERĪ² cell line, DPN also appeared to be able to suppress cell proliferation when levels of ERĪ² expression were high. In the T47D-ERĪ² cell line, PPT was unable to suppress cell proliferation at all ratios of ERĪ±/ERĪ² expression, reflecting its ability to activate only ERĪ± and not ERĪ². It is concluded that effects of estrogen-like compounds on cell proliferation are dependent on the actual ERĪ±/ERĪ² expression levels in these cells or tissues and the potential of the estrogen agonists to activate ERĪ± and/or ERĪ²
    • ā€¦
    corecore