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A B S T R A C T

We evaluated the effect of six azoles on embryonic development in the rat whole embryo culture (WEC). Using
the total morphological scoring system (TMS), we calculated the ID10 concentration (effective dose for 10%
decrease in TMS). For evaluating gene specific responses, we combined previously and newly collected tran-
scriptomics data of rat WEC exposed to a total of twelve azoles at their ID10 for 4 h. Results revealed shared
expressions responses in genes involved in the retinoic acid (RA) and sterol biosynthesis pathways, which are
respectively representatives of developmental toxicity and targeted fungicidal action of the azoles. Azoles with
more pronounced effects on the regulation of RA-associated genes were generally characterized as more potent
embryotoxicants. Overall, compounds with strong sterol biosynthesis related responses and low RA related re-
sponses were considered as more favourable candidates, as they specifically regulated genes related to a desired
target response. Among the identified sterol associated genes, we detected that methylsterol monooxygenase 1
(Msmo1) was more sensitively induced compared to Cyp51, a classical biomarker of this pathway. Therefore, we
suggest that Msmo1 could be a better biomarker for screening the fungicidal value of azoles. In summary, we
conclude that the embryonic regulation of RA and sterol metabolic pathways could be indicators for ranking
azoles as embryotoxicants and determining their drug efficacy.

1. Introduction

Regulatory guidelines for the risk assessment of chemicals require
relatively high numbers of experimental animals for reproductive and
developmental toxicity testing (van der Jagt et al., 2004). To reduce,
refine and replace the use of laboratory animals, a variety of alternative
assays has been developed over the past decades, including simple cell-
line assays, organ cultures or more complicated whole embryo culture
techniques and organs-on-a chip (Augustine-Rauch et al., 2010;
Piersma, 2006).

An advanced in vitro model that mimics in vivo organogenesis and
embryonic development is the rat whole embryo culture (WEC) tech-
nique (Piersma, 2004; Robinson et al., 2012d). It is a widely used
technique for screening embryotoxicants by monitoring both neurula-
tion and organogenesis during gestational days (GD) 10 to 12 (New
et al., 1976). A variety of morphological endpoints is combined in the
Total Morphological Score (TMS) (Piersma, 2004). Applying the TMS in
rat WEC, effects of chemicals on the embryonic growth and

development can be studied both qualitatively and quantitatively. WEC
also enables the implementation of toxicogenomic-based approaches
for mechanistic evaluation of the embryotoxic profile of xenobiotics.
Gene signatures can predate and predict morphological consequences
of toxic stimuli (Daston and Naciff 2010; Dimopoulou et al., 2017;
Luijten et al., 2010; Robinson et al., 2012a, 2010). Furthermore, tran-
scriptomics can be applied to identify biomarkers for detecting specific
embryotoxic responses (Robinson et al., 2012a).

Azoles are antifungal agents for clinical and agricultural use. They
have been designed to affect the Cyp51 enzyme, which catalyses the
conversion of lanosterol to ergosterol on the fungal cell membrane, and
leads to cell death when affected (Marotta and Tiboni, 2010). In
mammalian systems, Cyp51 is less sensitive to azoles, but still critical
for the sterol biosynthesis pathway. Moreover, azoles can induce many
toxic responses in mammals by disturbing P450- mediated pathways
and interfering with retinoic acid (RA) homeostasis (de Jong et al.,
2011; Dimopoulou et al., 2017, 2016; Menegola et al., 2006). RA is
crucial for maintaining balanced embryonic growth and differentiation,
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and Cyp26a1 is its key regulatory metabolic enzyme, catalysing the first
step in the degradation of RA, (Piersma et al., 2017; Tonk et al., 2015).
Previous in vivo and in vitro studies suggest that when rat embryos were
exposed to either RA or azoles, similar teratogenic outcomes were ob-
served, including craniofacial and axial defects (Cunningham and
Duester, 2015; Luijten et al., 2010; Piersma et al., 2017; Robinson et al.,
2012c). Therefore, RA modulation may play a role in the develop-
mental toxicity due to azole exposure.

In our previous study (Dimopoulou et al., 2017), we combined the
WEC technique with transcriptomic analysis for determining the effects
of six azoles. Gene expression signatures of embryos exposed to the six
tested azoles suggested that a RA-associated gene set corresponded with
the toxicological mode of action while a sterol biosynthesis-related gene
set represented the fungicidal activity of the azole compounds. In the
present study, we assessed the relative embryotoxic potencies of six
additional compounds − three known and three novel azoles − by
performing a global gene expression profiling of these azoles. Subse-
quently, the gene expression data of all twelve compounds were eval-
uated in one combined analysis, focussing on the RA and sterol bio-
synthesis pathways. We aimed to define biomarkers related to the
aforementioned pathways, as promising molecular endpoints for clas-
sifying the desired fungicidal as well as the embryotoxic responses of
azoles, and correlating the latter with available in vivo embryotoxicity
data.

2. Materials and methods

2.1. Animal care

As described in our previous WEC studies (Dimopoulou et al., 2017,
2016), all the animal studies were approved and performed at the
National Institute of Public Health and the Environment (RIVM) in
concordance with European regulations. Wistar rats (HsdCpd:WU)
(Harlan, The Netherlands) were housed at the RIVM Animal Care fa-
cility in a climate-controlled room with a 12 h light cycle (04:00-16:00
dark). Water and food were provided ad libitum. After acclimating for 2
weeks, virgin female rats were housed with male rats for a 3-h mating
period (9:00-12:00, described as GD 0). Mated dams were afterwards
individually housed. Rats were daily monitored for their general health
condition during the period of the present study.

2.2. Rat whole embryo culture

Following previous studies (Dimopoulou et al., 2017, 2016; Luijten
et al., 2010; Piersma 2004; Robinson et al., 2010), on GD 10, between
9:00 and 12:00 a.m., dams were euthanized by intracardiac injection of
T61R (Intervet, The Netherlands). Rat embryos were immediately se-
parated from the uterus. The peripheral trophoblastic cell zone and
parietal yolk sac membrane were removed under the microscope
leaving both the visceral yolk sac and ectoplacental cone intact. Em-
bryos with 1–5 somites were further cultured, while only embryos with
2–4 somites were used for gene expression studies (Luijten et al., 2010).
Embryos were separately cultured in flasks with 2 mL culture medium,
containing 90% pregnant bovine serum and 10% rat serum (Biochrom,
Berlin, Germany), diluted with 14% Hank’s solution (Gibco) and sup-
plemented with 1.6 mg/mL D-glucose and 75 μg/mL L-methionine
(Sigma-Aldrich, Zwijndrecht, The Netherlands). The culture flasks were
placed in rotating incubators, completely protected from light exposure
and with stable internal temperature of 37.7 °C. A mixture of gas was
supplied twice daily for 30 s, with increasing concentration of oxygen:
on the first day (GD10) at 9:00 and 16:00 (5% O2, 5% CO2, 90% N2), on
the second day (GD11) at 9:00 and 16:00 (20% O2, 5% CO2, 75% N2)
and on the third day (GD12) at 9:00 (40% O2, 5% CO2, 55% N2).

2.3. Morphological assessment and statistical analysis of individual
endpoints

Embryos were cultured for 48 h (GD 10–12) and morphologically
assessed according to the TMS system (Brown and Fabro, 1981).
Twenty morphological endpoints were included in this morphological
assessment, which were sub-divided into two basic groups. These re-
presented growth parameters (including yolk sac diameter, crown-rump
length, head diameter and number of somites) and developmental/
functional parameters, such as yolk sac and allantoic blood circulation,
heart formation and heart beating, embryo- turning, caudal neural tube,
optic and otic system, fore- and hind- limb, branchial arches, man-
dibular and maxillary process and the shape and size of somites. The
TMS is a quantitative system for identifying any possible specific and
selective embryotoxic effect of the tested compounds in rat embryos.
Therefore, the sum of scores for each of the morphological endpoints
was calculated for detecting any morphological alteration and for
comparing with the time-matched controls. Within each exposure
group, including also the vehicle control (DMSO), 8 rat embryos were
evaluated. For normalizing the data and eliminating daily variation, the
GD10 embryos within the same exposure group were derived from
dams sacrificed on different days. Statistical analysis was performed
using the parametric (Student’s t-test) and non-parametric (Mann-
Whitney) (unpaired), two-sided, and with 95% confidence intervals.
Due to high agreement between these approaches, the significance
values deriving from the Student’s t-test are shown here. Images of the
examined embryos (exposed for 48 h to either DMSO or tested com-
pounds) were obtained using an Olympus SZX9 camera at × 20 mag-
nification and Olympus DP software.

2.4. Test compounds and exposure concentrations

This study combines data of six known azole compounds from our
previous publication (Dimopoulou et al., 2017) and additional data of
three known and three new azoles derived from the present study. For
the present study, the following three known and three novel azoles
were tested in rat WEC for 48 h (0–48 h) in a range of concentrations
with the lowest concentration inducing no morphological effect to the
highest being the maximal achievable concentration in culture. The
three known azoles were: fenarimol (FEN; CAS#60168-88-9, purity
99.9%, Sigma-Aldrich, Zwijndrecht, The Netherlands); propiconazole
(PRO; CAS#60207-90-1, purity 99.1%, Sigma-Aldrich, Zwijndrecht,
The Netherlands); and tebuconazole (TEB; CAS#107534-96-3, purity
99.4%, Sigma-Aldrich, Zwijndrecht) at 20, 60 200 and 600 μM. BASF
SE (Ludwigshafen, Germany) kindly provided the three novel azole-
compounds (with purity> 95%) and their chemical information is
summarised in Table 1. B595 and B600 were tested at 60, 200 and
600 μM; and B599 at 2, 6, 20 and 60 μM. All the compounds were
dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Zwijndrecht,
The Netherlands), and all embryos were exposed to a final DMSO
concentration of 0.1%. As has been previously described, 0.1% DMSO
did not significantly alter the morphology (4 and 48 h) and has limited
effects on gene expression after 4 h of exposure (Dimopoulou et al.,
2017; Robinson et al., 2010). The concentration at which rat WEC were
exposed to conduct the gene expression analysis was in the same line of
concept with our previous study (Dimopoulou et al., 2017) and calcu-
lated after completing the morphological assessment of rat embryos
(48 h). Next, we calculated the concentration which results to 10%
reduction of the control TMS (ID10) with both PROAST (Slob, 2002) and
Graphpad software (www.graphpad.com). For microarray analysis, rat
WEC were exposed for 4 h (0–4 h) to the tested compounds at their ID10

values: FEN at 140 μM, PRO at 220 μM, TEB at 115 μM, B595 at
180 μM, B599 at 5 μM, and B600 at 110 μM, as derived from the con-
centration response curves on TMS.
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2.5. Whole embryo RNA isolation

For transcriptomics, 4-h cultured embryos were quickly scored on
the basis of their somite number, their position in the yolk sac, neural
tube developmental stage, crown-rump length and head diameter. They
were then isolated from the yolk sac and ectoplacental cone, placed in
200 μL RNAlater (Ambion, Austin, Texas), stored for one week at 4 °C,
and then stored for further processing at −80 °C. After the embryos
were thawed on ice, they were separately homogenized by passing
them 10 times though a 1 mL syringe with a 26G needle. RNA was
further isolated by using the RNeasy Micro Plus RNA isolation kit (CAS
number 74034, Qiagen, the Netherlands) and manufacturer’s protocol.
RNA was eluted with 14 μM RNase-free H2O and stored at −80 °C.
Quantity and quality of the isolated RNA were measured with
Nanodrop (Nanodrop Technologies Inc., Wilmington, Delaware) and
2100 BioAnalyzer (Agilent Technologies, Palo Alto, California).
Samples with absorbance value between 1.9 and 2.2 (ratio 260 mm/
280 mm) and RNA integrity number (RIN) higher than 8 were further
used for performing the microarray analysis.

2.6. Microarray hybridization

RNA hybridization and microarray experimentations were per-
formed by the Dutch Service and Support Provider (MAD) of the
University of Amsterdam, the Netherlands. In agreement with our
previous publication (Dimopoulou et al., 2017), for every sample, RNA
was amplified, biotin-labelled and hybridized to Affymetrix GeneChip
HT RG-230 PM Array Plates according to the provided protocols by
Affymetrix (Santa Clara, CA). After staining, the HT Array plate was
read by the Affymetrix GeneChip® HT Scanner and analysed by the
Affymetrix GeneChip® Operating Software. For performing the afore-
mentioned steps, the GeneTitan® Hybridization, Wash, and Stain Kit for
3′ IVT Arrays (cat no. 901530) was used. In total, 56 arrays were further
analysed (8 embryos per exposure group, 6 tested compounds and 1
control group).

2.7. Microarray analysis and data processing

The quality control (QC) and the normalization of the microarray
data were performed using the Affymetrix array QC pipeline at
ArrayAnalysis.org webpage (www.arrayanalysis.org) (Eijssen et al.,
2013), designed by the Department of Bioinformatics in Maastricht
University. Due to normal expected biological differences between the
two studies ((Dimopoulou et al., 2017) and present) and, consequently,
to eliminate any experimental-specific gene responses, the raw data

were separately normalized with their appropriate control for each
study and accordingly processed. Raw microarray data were inspected
for their quality by assessing the 3′/5′ ratios for β-actin and GAPDH,
RNA degradation, background intensity, signal quality and the probe-
set homogeneity with NUSE (Normalized Unscaled Standard Error) and
RLE (Relative Log Expression). The Affymetrix CEL files were further
normalized by using the Robust Multichip Average (RMA) algorithm
(Irizarry et al., 2003) and the Brainarray custom CDF version 19 probe
set annotation (http://brainarray.mbni.med.umich.edu/Brainarray/
default.asp) (Dai et al., 2005). In total, 13,877 probe sets, each corre-
sponding to an Entrez Gene ID, were further evaluated by performing a
statistical analysis in R (www.R-project.org) and Microsoft Excel. Raw
and normalized data were deposited in NCBI GEO (www.ncbi.nlm.nih.
gov/geo/) under accession number GSE102082.

2.8. Identification of significantly altered genes

Normalized data were log transformed. For each exposure condi-
tion, gene expression data were compared to the appropriate control
(each study has a separate control group), for calculating absolute
average fold changes of individual gene expression. Differentially ex-
pressed genes were identified by using ANOVA, using a p-value<
0.001 and a False Discovery Rate (FDR) of 10%, as stringency criteria.
The statistical criteria were set similar to earlier published studies from
our laboratory, and they partly determined the number of genes dif-
ferentially expressed. The 53 genes, which were differentially expressed
in at least one of the eight rat WEC samples from their respective ex-
posure groups, were combined for further analysis. Gene expression
responses were visualized using a heatmap combined with hierarchical
clustering (Euclidean distance, Ward linkage) as well as Principal
Component Analysis (PCA). Each bar in the heatmap represents the
average of the gene expression in the experimental group compared to
the respective control group of each study.

2.9. Functional interpretation analysis of differentially expressed genes

Following the concept of our previous study (Dimopoulou et al.,
2017), functional annotation and overrepresentation analysis were
performed using DAVID (https://david.ncifcrf.gov/) (Huang da et al.,
2009) and literature data (Robinson et al., 2012b,c; Tonk et al., 2015).
Here, we additionally applied the gene sets already identified from our
previous study, which included genes participating in RA pathway,
general development and the sterol biosynthesis pathway. Furthermore,
we indicated three additional pathways that importantly identified
genes belong to apoptosis, neural differentiation, and vessel formation.
The combined gene expression data were summarised to absolute
average fold changes per pathway. Next, the absolute average fold
changes of genes of interest or of the whole pathway per exposure
group were plotted against the compound concentration used. Finally,
the absolute fold change of gene expression per RA and sterol bio-
synthesis pathways versus the used ID10 concentrations and the relative
in vivo potencies of the tested compounds in rat embryos were plotted in
a 3D plot using R.

2.10. In vivo data analysis

In addition to previously derived in vivo data (Dimopoulou et al.,
2017), a literature overview was performed to determine the in vivo
developmental toxic profile of the three known azoles. Applying the
same criteria concerning the species, chemical exposure during specific
GD and scheme of dosing range, we selected studies performed in rats
orally exposed to the tested compounds during either GD6-15 or GD7-
16 at multiple dose regimes. Studies with at least one control group and
two dose groups were selected to allow analysis using the Benchmark
Dose (BMD) approach. The BMD values were calculated based on the
evidence of adverse skeletal changes or cleft palate formation, both

Table 1
Chemical information of the three novel azoles tested in the present study.

Code Structure Molecular weight (g/mol)

B595 415.4

B599 418.5

B600 434.3
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selected as sensitive endpoints of in vivo developmental toxicity and
specific for the tested group of chemicals. For some of the tested
compounds, other morphological endpoints were considered for cal-
culating the BMD values, dependent on the specificity of the mal-
formations observed. A concentration-response curve was fitted to the
data to determine the BMD for the selected benchmark response (BMR)
for each tested azole. The BMD was defined as 10% additional in-
cidence of adverse skeletal changes, cleft palate or any other relevant
morphological alteration (BMD10). The BMD10 of each compound was
calculated with BMD and PROAST software (Slob, 2002) using di-
chotomous concentration-response models (quantal data). Among the
several models that were fitted, the selection of the best model was
determined based on the goodness of fit (p-value> 0.05). The in vivo
prenatal developmental toxicity data for the three new azoles were
provided by BASF. For the three novel compounds, given the available
data, we proceeded with a qualitative in vivo potency ranking concept,
which was adjusted and applied in our study, including also the known
compounds. For implementing this approach of in vivo analysis, the
profiles of the tested compounds were characterized as potent, mod-
erate and weak or non-potent.

3. Results

3.1. Relative potency of azoles causing morphological alterations in rat
WEC

All azoles induced some form of developmental toxicity in a con-
centration-dependent manner in WEC (Fig. 1, Table 2). All newly tested
compounds showed statistically significant effects on TMS at con-
centrations higher than 60 μM, except B599, which affected TMS at
20 μM (Table 2). Caudal neural tube and somite formation were the
most sensitive parameters for all compounds, except PRO. ID10 con-
centrations on TMS were calculated for all the tested compounds from
Fig. 1, after combining the current and our previous study (Dimopoulou
et al., 2017). The decreasing potency ranking of the tested azoles was as
follows: B599 >FLU ∼ MCZ>KTZ>DFZ ∼ B600 >TEB>FEN>
TDF>B595 >PRO>PTZ with ID10s of 5, 25, 40, 110, 115, 140, 150,
180, 220 and 250 μM, respectively.

3.2. Significantly regulated genes across twelve azoles

For studying the effect of the tested azoles on the transcriptome,
embryos were exposed for 4 h on GD10 (0–4 h of culture) to the ID10

concentration of each compound, as calculated from Fig. 1. Somite
formation was unaffected directly after all 4-h exposures, indicating the
absence of developmental delays at that stage (Fig. 2).

For analysing the gene expression data, we compared each exposure
group with the appropriate concurrent vehicle control and we applied
the same stringency criteria as mentioned previously (p-value < 0.001
and FDR of 10%) (Dimopoulou et al., 2017). The combined data

analysis revealed 53 genes that were statistically significantly regulated
by at least one of the twelve azoles. As shown in Fig. 3, embryonic
exposure to KTZ and DFZ caused the highest number of statistically
significant regulation of genes. On the other hand, MCZ and PTZ did not
show statistically significantly regulated genes under the stringency
criteria applied.

The hierarchical clustering of the expression data of the 53 genes is
illustrated as a heatmap (Fig. 4). Pathway analysis using DAVID re-
vealed enrichment of genes involved in six pathways or processes; RA
metabolism, general development, sterol biosynthesis, apoptosis, neural
differentiation and vessel formation (Fig. 4, right panel). For some of
the genes, an overlap was observed among pathways. For example,
Cyp26a1 appears both in the RA pathway and in the general develop-
ment pathway.

3.3. Quantitative gene expression changes in the RA and sterol biosynthesis
pathways

Within the six functional gene groups that were identified, the RA
and sterol biosynthesis pathways were further analysed. As illustrated
in Fig. 5, the RA pathway showed a higher magnitude of regulation
compared to the sterol biosynthesis pathway in embryos exposed to
most compounds, excluding DFZ, MCZ and PTZ. DFZ induced regula-
tion of both pathways to the same extent. MCZ and PTZ revealed a lack
of response of both pathways under the significance thresholds applied.

3.4. Gene expression changes observed throughout the sterol biosynthesis
pathway

The sterol biosynthesis pathway in mammalian systems consists of a
cascade of enzymatic reactions initiated by fatty acid degradation. As in
fungi, lanosterol is further converted to intermediate moieties, which
are substrates for Cyp51, Msmo1 and Nsdhl for synthesizing cholesterol
(Fig. 6A).

We numbered the enzymes included on the microarray in the order
of appearance in the sterol biosynthesis pathway (Fig. 6A) and plotted
their gene expression changes by the different azoles (Fig. 6B). Msmo1
showed the highest gene expression regulation after exposure to the
tested compounds, except for PTZ, TEB and B599 (Fig. 6B). The greatest
effect on the regulation of Msmo1 was observed in rat embryos exposed
to DFZ (1.96), KTZ (1.82) and TDF (1.55). The remaining genes were
regulated in a relatively similar expression ratio, with the exception of
Dhcr7 in the case of PRO, which reached almost the same level of ex-
pression of Msmo1 (Fig. 6B), at a fold change of 1.5.

3.5. A general comparison of in vivo and in vitro data

In vivo studies on rat embryos, in which the developmental toxic
profile of the twelve azoles was tested, were further analysed and the
BMD10 value of each compound was calculated (Table 3). With these

Fig. 1. Total Morphological Score (TMS) concentration-responses of
twelve azoles in the rat WEC after 48 h of exposure. Each point represents
a mean ± SD (N = 8). The curves for the six compounds in the left side
list were reproduced from (Dimopoulou et al., 2017).
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data, we performed a potency ranking based on the calculated BMD10

concentration, which was based on an overall assessment of doses-

dependent embryotoxic effects. The BMD10 was derived based on the
most sensitive endpoint, which might differ between compounds. Ab-
normalities might include skeletal defects, cleft palate, and absence of
renal papilla or hydronephrosis. For the three novel compounds B595,
B599 and B600, in vivo prenatal developmental toxicity data were
provided by BASF SE laboratories. The potency ranking of these com-
pounds was qualitatively performed based on limited dose-response
information (Li et al., 2016) and resulted in the following order:
B599 > B600 > B595. Based on the in vivo qualitative and quanti-
tative (where applicable) data, we allocated the twelve tested com-
pounds into one of three developmental toxicity potency groups. The
most potent compounds were B599, FLU and KTZ. The moderately
embryotoxic compounds in vivo were B600, FEN, MCZ, TDF and TEB,
while the weak or non-potent compounds were B595, DFZ, PRO and
PTZ (Table 3). Table 3 contains also our in vitro data of the twelve
azoles, including the ID10 concentrations based on TMS.

Fig. 7 shows a comparison of RA pathway regulation (x-axis), ID10

in WEC (y-axis) and sterol biosynthesis pathway regulation (z-axis)
with in vivo potency groups (Table 3, bar colour). B599, FLU and KTZ,
the potent developmental toxicants profile both in vivo (red bars) and in
vitro (low ID10 in the WEC assay), tended to have a more pronounced

Table 2
Overview of morphological effects of the tested azoles in the rat WEC assay.

Compound Concentration (μM) TMS CRL (mm) S48h − S0h FORE MID HIND CAUD OTIC OPTIC BRAN MAND-MAX SOM HEART

DMSO 0 65.8 ± 10.7 4 ± 0.11 25 ± 0.83 – – – – – – – – – –
FEN 20 65.9 ± 1.74 4.1 ± 0.09 24 ± 0.92 – – – – – – – – – –

60 63.8 ± 1.62 4.0 ± 0.27 24 ± 1.28 – – – – – – – – – –
200 51.7 ± 7.71*** 3.7 ± 0.19 20 ± 2.00*** – – – ** * – * * ** –
600 19.8 ± 3.35**** 2.3 ± 0.52*** # **** **** **** *** **** **** **** **** **** ****

PRO 20 65.2 ± 1.71 4.0 ± 0.16 25 ± 0.92 – – – – – – – – – –
60 64.4 ± 1.75 4.1 ± 0.09 24 ± 0.92 – – – – – – – – – –
200 60.0 ± 5.04* 3.8 ± 0.18 23 ± 1.13* – – – – – – * – – –
600 31.8 ± 8.24**** 3.1 ± 0.32*** # **** **** **** **** *** **** **** ** **** ****

TEB 20 65.7 ± 1.07 4.2 ± 0.14 24 ± 0.52 – – – – – – – – – –
60 63.6 ± 2.03 4.0 ± 0.28 23 ± 0.93 – – – – – – – – – –
200 52.4 ± 5.22** 3.7 ± 0.16 19 ± 2.00* – – – ** – – * – ** –
600 15.3 ± 20.5**** 1.7 ± 0.10* # **** **** **** *** **** **** **** **** **** ****

B595 60 66.2 ± 0.84 3.9 ± 0.17 24 ± 1.19 – – – – – – – – – –
200 57.7 ± 4.24* 3.7 ± 0.19* 22 ± 1.93* – – – * – – – – ** –
600 27.9 ± 12.12*** 2.9 ± 0.58**** 14 ± 4.96**** **** **** **** *** *** *** **** *** **** ****

B599 2 65.9 ± 0.92 4.0 ± 0.19 24 ± 0.00 – – – – – – – – – –
6 59.8 ± 3.60 4.0 ± 0.14 23 ± 0.71 – – – – – – – – – –
20 45.3 ± 7.10** 3.7 ± 0.16 18 ± 1.28*** ** – – *** ** – ** – ** –
60 24.4 ± 3.57**** 2.7 ± 0.23*** 12 ± 3.78**** **** *** **** *** **** **** **** *** **** ****

B600 60 65.1 ± 1.32 3.9 ± 0.37 24 ± 0.64 – – – – – – – – – –
200 50.3 ± 1.60* 3.5 ± 0.23* 23 ± 0.92* – – * ** – – * * – *
600 19.0 ± 3.67**** 1.9 ± 0.50**** # **** **** **** *** **** **** **** **** **** ****

Each number represents a mean ± SD (N = 8, Student’s t-test: *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001). CRL: crown-rump length; S48h-S0h: number of somites
that formed during the culture period of rat WEC; FORE: forebrain; MID: midbrain; HIND: hindbrain; CAUD: caudal neural tube; OTIC: otic system; OPTIC: optic system; BRAN: branchial
arches; MAND-MAX: mandibular and maxillary process; SOM: quality of somites and HEART: heart; “#”: could not be measured.

Fig. 2. Somitogenesis in rat embryos exposed for 4 h to six azoles at their ID10 con-
centration, collected for whole transcriptome analysis. Individual data with mean ± SD
are plotted (N = 8 embryos per group).

Fig. 3. Number of genes statistically significantly regulated by each
azole at the ID10 on TMS among the tested azoles (p-value < 0.001
and FDR 10%).
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effect on regulation of the RA pathway (Fig. 7). The compounds with
moderate developmental toxic profile (yellow bars) showed a more
limited effect on the RA and sterol biosynthesis pathways. MCZ was
classified as a moderate compound in the in vivo situation, which was
not in agreement with the morphological assessment of embryos in the
WEC assay. Additionally, the transcriptomic data revealed an absence
of gene-responses in embryos exposed to this azole (Fig. 3). These data
were similar to the transcriptome data obtained from embryos exposed
to PTZ, which was selected as a non-toxic compound for our study. In
contrast, PRO, a weak embryotoxicant in vivo and in vitro, presented a
strong RA-related profile, similar to TDF. DFZ and KTZ conceded a
comparable regulation of the sterol biosynthesis pathway, but DFZ did
not significantly disturb the RA-related genes. For the remainder of the
compounds, we found mixed responses, with a stronger regulation of
the RA pathway than of the sterol biosynthesis pathway (Fig. 7).

4. Discussion

In the present study, azoles induced concentration dependent

developmental toxic responses in rat WEC, including abnormalities in
neural tube closure, formation of the branchial arches and development
of the otic cup. Embryos exposed in vivo to the same azoles demon-
strated commonly observed abnormalities for triazoles, including cleft
palate (Tachibana and Monro, 1987) and skeletal abnormalities (Becker
et al., 1988; Giknis 1987; Ito et al., 1976; Lochry 1987; Stahl, 1997;
Unger et al., 1982), or hydronephrosis (Hoffman et al., 1980) and ab-
normalities in the urogenital system (Lamontia and Alvarez, 1984). It
should be noted that some of these abnormalities are induced in vivo at
stages beyond the WEC developmental period. The pattern of ab-
normalities due to either in vivo or in vitro exposure to azoles is similar
to that observed after exposure to RA (Luijten et al., 2010; Robinson
et al., 2012c). This observation is supportive of an involvement of the
RA pathway in the developmental toxicity of azoles. Comparing in vitro
ID10 with the in vivo BMD10 levels (Table 3), we concluded that potency
ranking in the WEC was largely similar to the potency ranking in the in
vivo situation.

We identified 53 genes statistically significantly regulated (ANOVA,
p-value < 0.001, FDR 10%) by at least one of the compounds, which

Fig. 4. Hierarchical clustering of the average gene
expression change in rat WEC by twelve azoles
(N = 8, p-value < 0.001 and FDR 10%), with
which 53 genes were identified as statistically sig-
nificantly regulated by at least one of the com-
pounds. Right panel: gene functionality in six path-
ways: RA (RA), general development (DEV), sterol
biosynthesis (STE), apoptosis (APO), neural differ-
entiation (NEU) and vessel formation (VES). Colors
indicate changes to vehicle. Red, up-regulation;
green, down-regulation; yellow, unchanged. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 5. Quantitative gene expression changes, related
to the RA and sterol biosynthesis pathways, of twelve
azoles in the rat WEC.
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were further categorized into six functional gene-groups. We further
analysed the responses of genes associated with the sterol biosynthesis
and RA pathways, due to their crucial role for determining the fungi-
cidal mode of action (sterol biosynthesis pathway) and the embryotoxic
potency (RA pathway) of the tested compounds.

Among the regulated sterol biosynthesis related genes, Msmo1
showed the highest increase in expression, after embryonic exposure to

KTZ and DFZ, as well as TDF and PRO. Despite the fact that mammalian
systems are less sensitive than fungal systems to azoles (Trosken et al.,
2006), the expression of sterol related genes in both biological systems
determines azoles’ fungicidal activity. The observed significant induc-
tion of Msmo1 (or its synonym, Sc4mol) was also identified in previous
studies in the rat WEC (Dimopoulou et al., 2017; Robinson et al.,
2012b), as well as in the zebrafish test (ZET) (Hermsen et al., 2012) and
Embryonic Stem Cell Test (EST) (van Dartel et al., 2011). Additionally,
considering that the expression pattern of all the individual sterol re-
lated genes was constant among the tested compounds (Fig. 6B), we
suggest that Msmo1 could be a more sensitive biomarker compared to
the already characterized biomarker Cyp51 (Marotta and Tiboni, 2010)
for studying the fungicidal activity. However, for concluding about the
extent of each gene’s specific importance in the sterol biosynthesis
pathway, studies on the level of the metabolome are needed. Msmo1 is
involved in an oxidation-reduction process, while it is also associated
with malformations, such as microcephaly and congenital cataract,
which could be linked with its extra role in the central nervous system
development (CNS), and especially in the midbrain neurogenesis (He
et al., 2011). Pinto at al. (Pinto et al., 2016) described that Msmo1
transcription is activated by the liver X receptors (LXR), which are
binding to the retinoid X receptors (RXR), a connection that could be
further associated with RA. Additionally, Srebp transcriptional factors
regulate the cholesterol biosynthesis pathway in mammalian systems,

Fig. 6. A. The sterol biosynthesis pathway in the
Rattus norvegicus, including the main intermediate
moieties and the contributing enzymes adapted from
www.wikipathways.org (Kutmon et al., 2016) and
(Santori et al., 2015). B. The quantitative regulation
of the genes that participate in the sterol biosynthesis
pathway in rat WEC exposed to twelve azoles.

Table 3
Overview of in vivo and in vitro developmental toxicity data of twelve azoles.

Compound in vitro WEC in vivo

ID10 (μM) BMD10 (μmol/kg) Potency Group

B599 5 – Potent
FLU 25 9.1 (Lamontia and Alvarez, 1984) Potent
MCZ 25 258.3 (Ito et al., 1976) Moderate
KTZ 40 20.1 (Tachibana and Monro, 1987) Potent
B600 110 – Moderate
DFZ 110 596.5 (Lochry, 1987) Weak
TEB 115 275.8 (Becker et al., 1988) Moderate
FEN 140 88.5 (Hoffman et al., 1980) Moderate
TDF 150 91.5 (Unger et al., 1982) Moderate
B595 180 – Weak
PRO 220 386.7 (Giknis, 1987) Weak
PTZ 250 917.8 (Stahl, 1997) Weak
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via interacting with the binding sites of Hmgcr and Fdft1 in the meva-
lonate arm in the beginning of the pathway (Mazein et al., 2013). Srebp
interacts directly with LXR and therefore may indirectly regulate genes
in the sterol biosynthesis pathway (Horton, 2002; Pinto et al., 2016).

Additionally, we observed that the potent in vivo and in vitro em-
bryotoxicants, as well as the moderate TDF and the weak PRO, altered
the expression of RA-related genes in a similar manner. The commonly
highest upregulated gene was Cyp26a1, which is upregulated for me-
tabolizing excess level of RA (Rhinn and Dollé, 2012). Therefore, we
suggest that the overexpression of the RA pathway could be the un-
derlying mechanism of induced developmental toxicity of azoles in the
rat WEC. Consequently, the application of RA-related biomarkers is
valuable for distinguishing highly potent embryotoxicants within the
same class of chemicals.

MCZ, a compound with potent in vitro and moderate in vivo em-
bryotoxic potency, lacked a statistically significant response on the
level of transcriptome in our combined analysis. This suggests that
transcriptomics may not be the optimal method to detect the embry-
otoxic mode of action of MCZ. Apoptosis, an additionally identified
functional gene group, was extensively regulated by the azoles that
showed the highest response of RA-related genes. Interestingly, similar
to the strong in vitro embryotoxicants FLU, KTZ and B599, MCZ did
show enhanced expression of Ngfr, an apoptosis related gene (Fig. 4).
Ngfr is associated with neuron differentiation in the brain region (Do
et al., 2016), while it has been also suggested to be mediator for thyroid
hormone activation (Porterfield, 2000) and a negative regulator of
angiogenesis (Parsi et al., 2012). Another apoptosis related strong effect
was identified on the expression of Fam101a, which is localized in the
midbrain and forebrain of 5-somite stage embryos (Hirano et al., 2005;
Mizuhashi et al., 2014), while it is involved in the bone maturation and
interacts with RA (NCBI, 2013). Furthermore, Txnip, a general bio-
marker of stress responses, is related with the dysregulation of cell di-
vision (Dunn et al., 2010; Patwari et al., 2006). The similarity of ex-
pression among genes of RA and apoptosis pathways could support our
hypothesis that RA related responses are directly linked to develop-
mental toxic responses and, therefore, could justify the consequent
embryotoxicity of the corresponding azoles.

Moreover, Lhx1, the most pronounced expressed gene among the

neural differentiation related genes, was remarkably affected in WEC
exposed to B599, FLU, KTZ and TDF, which are among the most potent
compounds. Lhx1 has been also suggested to be indirectly associated
with RA and RA-related morphological alterations. It is localized in the
brain and has been shown to interact with development related genes
and transcriptional factors (Furuyama et al., 1994), such as the Hox and
Pax genes, and therefore, it could be indirectly correlated with the
activation of the Gata and Wnt signalling pathways (Costantini and
Kopan, 2010; Hevner et al., 2002; Pratt et al., 2000). Karavanov et al.
(Karavanov et al., 1998) have also described its additional role in the
kidney development during embryonic development and in later stages
for maintaining the function of the ureteric bud.

Embryos exposed to azoles with high ID10 concentrations disclosed
a notable downregulation of a set of genes, which could explain the
sensitivity of the WEC system compared to the in vivo screening in
ranking DFZ and PRO. The highest regulation of Ifrd1, which partici-
pates in neuron differentiation and general development pathways
(Fig. 4), could be associated with cellular stress in multicellular or-
ganisms according to Zhao et al. (Zhao et al., 2010). In those embryos,
we also observed a significant accompanied downregulation of both
Arrdc4, a protein that regulates the ubiquitin-protein transferase ac-
tivity (Mackenzie et al., 2016), and Txnip (Fig. 4). Txnip is a member of
the alpha arrestin protein family (to which Arrdc4 belongs too), how-
ever the exact mechanism of collaboration of these two genes has not
been elucidated yet (Fishilevich et al., 2017).

To summarize, we investigated the potency ranking of twelve azoles
in the rat WEC, the vast majority of which was in line with the in vivo
potency ranking. We also studied the toxicological and fungicidal mode
of action of the selected compounds on the level of transcriptome using
the set of biomarkers that has been previously selected (Dimopoulou
et al., 2017). We concluded that the most potent embryotoxicants, both
in vivo and in vitro, revealed an overexpression of genes that partici-
pated in RA related pathways, and were associated with apoptosis and
stress responses. Moreover, we identified responses of genes that par-
ticipated in the sterol biosynthesis pathway and, therefore, related to
the fungicidal mode of action. We found that Msmo1 was a more sen-
sitive biomarker for screening the functional efficacy of azoles com-
pared to Cyp51, which could improve the in vitro assessment of existing

Fig. 7. Correlation of in vivo and in vitro in the rat WEC data
for twelve tested azoles. Bars with red, yellow and green
colour indicate in a qualitative way the potent, moderate and
weak or non-toxic in vivo profile of these azoles. The length of
the bars represents the in vitro ID10 concentration (y-axis).
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)
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and future antifungal chemicals.
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